126 4. Particular Determinants
- a.K
r 1
n(0) =(−1)
r+1
n(r+n−1)!(r−1)!r!(n−r)!.
b.Krs
n(0) =(−1)
r+s
rsr+s− 1(
n− 1r− 1)(
n− 1s− 1)(
r+n− 1r)(
s+n− 1s)
.
c.Kn(0) =[1!2!3!···(n−1)!]3n!(n+ 1)!(n+ 2)!···(2n−1)!.
5.
Kn(
1
2
)
=2
n∣
∣
∣
∣
1
2 i+2j− 1∣
∣
∣
∣
n=2
2 n
2
[1!2!3!···(n−1)!]2n− 1
∏r=0(2r+ 1)!(r+n)!r!(2r+2n+ 1)!.
[Apply the Legendre duplication formula in Appendix A.1].6.By choosinghsuitably, evaluate| 1 /(2i+2j−3)|n.The next set of identities are of a different nature. The parameternisomitted fromVnr,K
ij
n, and so forth.Identities 2.
∑jK
sjh+r+j− 1=δrs, 1 ≤r≤n. (4.10.16)∑
jVjh+r+j− 1=1, 1 ≤r≤n. (4.10.17)∑
jVj(h+r+j−1)(h+s+j−1)=
δrsVr, 1 ≤r, s≤n.(4.10.18)∑
jjK1 jh+r+j− 1=V 1 −hδr 1 , 1 ≤r≤n. (4.10.19)∑
jVj=∑
i∑
jK
ij
=n(n+h). (4.10.20)∑
jjK1 j
=(n2
+nh−h)V 1. (4.10.21)Proof. Equation (4.10.16) is simply the identity
∑jkrjKsj
=δrs.To prove (4.10.17), apply (4.10.9) withr→jand (4.10.4): and (4.10.12),
V 1
∑
jVjh+r+j− 1=
∑
j(h+j)Kj 1h+r+j− 1=
∑
j(
1 −
r− 1h+r+j− 1)
K
j 1