4.10 Henkelians 3 127=V 1 −(r−1)∑
jK
j 1h+r+j− 1=V 1 −(r−1)δr 1 , 1 ≤r≤n.The second term is zero. The result follows.
The proof of (4.10.18) whens=rfollows from the identity1
(h+r+j−1)(h+s+j−1)=
1
s−r(
1
h+r+j− 1−
1
h+s+j− 1)
and (4.10.15). Whens=r, the proof follows from (4.10.8) and (4.10.16):
Vr∑
sVs(h+r+s−1)
2=
∑
sK
rsh+r+s− 1=1.
To prove (4.10.19), apply (4.10.4) and (4.10.16):
∑
jjK
1 jh+r+j− 1=
∑
j(
1 −
h+r− 1h+r+j− 1)
K
1 j=V 1 −hδr 1 −(r−1)δr 1 , 1 ≤r≤n.The third term is zero. The result follows.
Equation (4.10.20) follows from (4.10.4) and the double-sum identity (C)(Section 3.4) withfr=randgs=s+h−1, and (4.10.21) follows from
the identity (4.10.9) in the form
jK1 j
=V 1 Vj−hK1 jby summing overjand applying (4.10.4) and (4.10.20).
4.10.2 Three Formulas of the Rodrigues Type.......
Let
Rn(x)=n
∑j=1K
1 j
xj− 1=
1
Kn∣ ∣ ∣ ∣ ∣ ∣ ∣
1 xx
2
··· x
n− 1k 21 k 22 k 23 ··· k 2 n..........................kn 1 kn 2 kn 3 ··· knn∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
Theorem 4.37.
Rn(x)=(h+n)!(n−1)!
2
h!x
h+1D
n− 1
[xh+n
(1−x)n− 1
].Proof. Referring to (4.10.9), (4.10.5), and (4.10.6),
D
n− 1[
xh+n
(1−x)n− 1]
=
n− 1
∑i=0(−1)
i(
n− 1i)
D
n− 1
(xh+n+i
)