4.10 Henkelians 3 129Sn(x, h)=Kn(h)Vnnn
∑j=1Vnj(−x)j− 1h+n+j− 1Hence,
(
h+n− 1h)
Sn(x, h)Sn(0,h)=(−1)
n+1n
∑j=1Vnj(−x)j− 1h+n+j− 1=
n
∑j=11
(n−j)!(h+j−1)![
(h+n+j−2)!x
j− 1(j−1)!]
=
1
(h+n−1)!n
∑j=1(
h+n− 1h+j− 1)
D
h+n− 1
(xh+n+j− 2
),(h+n−1)!
2h!(n−1)!Sn(x, h)Sn(0,h)=D
h+n− 1
xn−^1n
∑j=1(
h+n− 1h+j− 1)
xh+j− 1
=D
h+n− 1[
xn− 1h+n− 1
∑r=h(
h+n− 1r)
xr]
=D
h+n− 1[
xn− 1
(1 +x)h+n− 1
−ph+n− 2 (x)]
,
wherepr(x) is a polynomial of degreer. Formula (a) follows. To prove (b),
putx=− 1 −t. The details are elementary.
Further formulas of the Rodrigues type appear in Section 4.11.4.4.10.3 Bordered Yamazaki–Hori Determinants — 1....
Let
A=|aij|n=|θm|n,B=|bij|n=|φm|n, 0 ≤m≤ 2 n− 1 , (4.10.22)denote two Hankelians, where
aij=1
i+j− 1[
p2
x2(i+j−1)
+q2
y2(i+j−1)
− 1]
,
θm=1
m+1[
p2
x2 m+2
+q2
y2 m+2
− 1]
,
bij=1
i+j− 1[
p2
Xi+j− 1
+q2
Yi+j− 1]
,
φm=1
m+1[
p2
Xm+1
+q2
Ym+1]
,
p2
+q2
=1,X=x2
− 1 ,Y=y2
− 1. (4.10.23)