4.10 Henkelians 3 131=
∑
i,j,r,sAisAjr(2i−1)(2j−1)[p2
x2(i+j−1)
+q2
y2(i+j−1)
−1]=
∑
i,j,r,s(i+j−1)aijAisArj(2i−1)(2j−1)=
1
2∑
i,j,r,s(
1
2 i− 1+
1
2 j− 1)
aijAisArj=
∑
i,j,r,saijAisArj2 i− 1=
∑
i,sAis2 i− 1∑
r∑
jaijArj=A
∑
i,sAis2 i− 1∑
rδir=−AW
which proves the theorem.
Theorem 4.40.
p2
V2
(x)+q2
V2
(y)=W2
−AW.This theorem resembles Theorem 4.39 closely, but the following proofbears little resemblance to the proof of Theorem 4.39. Applying double-sum
identity (D) in Section 3.4 withfr=randgs=s−1,
∑r∑
s[
p2
x2(r+s−1)
+q2
y2(r+s−1)
− 1]
A
is
Arj
=(i+j−1)Aij
,p2[
∑
sA
is
x2 s− 1][
∑
rA
rj
x2 r− 1]
+q2[
∑
sA
is
y2 s− 1][
∑
rA
rj
y2 r− 1]
−
[
∑
sA
is][
∑
rA
rj]
=(i+j−1)Aij
.Put
λi(x)=∑
jA
ij
x2 j− 1
.Then,
p2
λi(x)λj(x)+q2
λi(y)λj(y)−λi(1)λj(1)=(i+j−1)Aij
.Divide by (2i−1)(2j−1), sum overiandjand note that
∑
iλi(x)2 i− 1=−
V(x)