4.12 Hankelians 5 163wherefis an arbitrary function oft. Then, it is proved that Section 6.5.2
on Toda equations that
D
2
(logAn)=An+1An− 1A
2
n. (4.12.47)
Put
gn=D2
(logAn). (4.12.48)Theorem 4.58. gnsatisfies the differential–difference equation
gn=ng 1 +n− 1
∑r=1(n−r)D2
(loggr).Proof. From (4.12.47),
Ar+1Ar− 1A
2
r=gr,s
∏r=1Ar+1Ars
∏r=1Ar− 1Ar=
s
∏r=1gr,which simplifies to
As+1As=A 1
s
∏r=1gr. (4.12.49)Hence,
n− 1
∏s=1As+1As=A
n− 1
1n− 1
∏s=1s
∏r=1gr,An=An
1n− 1
∏r=1gn−r
r=A
n
1n− 1
∏r=1gr
n−r, (4.12.50)
logAn=nlogA 1 +n− 1
∑r=1(n−r) loggr. (4.12.51)The theorem appears after differentiating twice with respect to tand
referring to (4.12.48).
In certain cases, the differential–difference equation can be solved andAnevaluated from (4.12.50). For example, let
f=(
et1 −e
t)p