4.13 Hankelians 6 165Substituting this formula into (4.12.50) withAn→E
(p)
n andE(1)
n =f,E
(p)
n=
(
et1 −e
t)p n− 1
∏r=1[
(n−r)(p+n−r−1)et(1−e
t
)
2]r, (4.12.57)
which yields the stated formula.
Note that the substitutionx=e
t
yieldsψ(1)
m =ψm,E
(1)
n =En,so thatψ
(p)
m may be regarded as a further generalization of the geometricseriesψmandE
(p)
n is a generalization of Lawden’s determinantEn.Exercise.If
f={
secp
xcosecp
x,
prove that
An={
secn(p+n−1)
xcosecn(p+n−1)n− 1
∏r=1r!(p)r.4.13 Hankelians 6
4.13.1 Two Matrix Identities and Their Corollaries....
Define three matricesM,K, andNof ordernas follows:
M=[αij]n (symmetric),K=[2
i+j− 1
ki+j− 2 ]n (Hankel),N=[βij]n (lower triangular),(4.13.1)
where
αij={
(−1)
j− 1
ui−j+ui+j− 2 ,j≤i(−1)
i− 1
uj−i+ui+j+2,j≥i;(4.13.2)
ur=N
∑j=1ajfr(xj),ajarbitrary; (4.13.3)fr(x)=1
2{
(x+√
1+x
2
)r
+(x−√
1+x
2
)r}
; (4.13.4)
kr=N
∑j=1ajxr
j; (4.13.5)
βij=0,j>iori+jodd,