168 4. Particular Determinants
Define three other matricesM
′
,K
′
, andN
′
of ordernas follows:M
′
=[α′
ij]n (symmetric),K
′
=[2i+j− 1
(ki+j+ki+j− 2 )]n (Hankel),N
′
=[β′
ij
]n (lower triangular),(4.13.14)
wherekris defined in (4.13.5);
α′
ij=
{
(−1)
j− 1
ui−j+ui+j,j≤i(−1)i− 1
uj−i+ui+j,j≥i,(4.13.15)
β′
ij=0,j>iori+jodd,β′
2 i, 2 j=1
2
μij, 1 ≤j≤i,β′
2 i+1, 2 j+1=λij+1
2
μij, 0 ≤j≤i. (4.13.16)The functionsλijand
1
2
μijappear in Appendix A.10.μij=(2j/i)λij.Theorem 4.61.
M=N
′
K(N′
)T
.The details of the proof are similar to those of Theorem 4.60.LetN
′
K′
(N′
)T
=[γ′
ij]nand consider the four cases separately. It is found with the aid of
Theorem A.8(e) in Appendix A.10 that
γ′
2 p+1, 2 q+1=
N
∑j=1aij{
gq−p(xj)+gq+p+1(xj)}
=α′
2 p+1, 2 q+1(4.13.17)
and further thatγ
′
ij=α′
ijfor all values ofiandj.Corollary.
|α′
ij|n=|M′
|n=|N′
|2
n|K′
|n=|β′
ij|2
n^2n∣
∣ 2 i+j−^2 (k
i+j+ki+j− 2 )∣
∣
n=2
n
2
|ki+j+ki+j− 2 |n (4.13.18)sinceβ
′
ii= 1 for all values ofi. Thus,M′
can also be expressed as aHankelian.
4.13.2 The Factors of a Particular Symmetric Toeplitz
Determinant
The determinants
Pn=1
2|pij|n,