5.2 The Generalized Cusick Identities 183=
n
∑j=1n+j− 1
∑i=jH
(n)
jnK(n)
i−j+1,nx2 n−i− 1=
2 n− 1
∑i=1x2 n−i− 1n
∑j=1H
(n)
jnK
(n)
i−j+1,n. (5.2.20)
Note that the changes in the limits of thei-sum have introduced only zero
terms. The lemma follows by equating coefficients ofx
2 n−i− 1.
5.2.3 Proof of the Principal Theorem
A double-sum identity containing the symbolscij,fi, andgiis given in
Appendix A.3. It follows from Lemma 5.5 that the conditions defining the
validity of the double-sum identity are satisfied if
fi=(−1)i+1
Pf(n)
i,
cij=H(n)
inK
(n)
jn,
gi=ai, 2 n.Hence,
2 n− 1
∑i=1(−1)
i+1
Pf(n)
i
ai, 2 n=n
∑i=1n
∑j=1H
(n)
inK
(n)
jn
ai+j− 1 , 2 n=
n
∑i=1n
∑j=1H
(n)
inK
(n)
jn2 n−i−j+1
∑s=1φs+i+j− 2 ψ 2 n−s.From (5.2.11), the sum on the left is equal to Pfn. Also, since the interval
(1, 2 n−i−j+ 1) can be split into the intervals (1,n+1−j) and (n+2−j,
2 n−i−j+ 1), it follows from the note in Appendix A.3 on a triple sum
that
Pfn=n
∑j=1K
(n)
jn
Xj+n− 1
∑i=1H
(n)
in
Yi,where
Xj=n
∑i=1H
(n)
inn+1−j
∑s=1φs+i+j− 2 ψ 2 n−s=
n+1−j
∑s=1ψ 2 n−sn
∑i=1φs+i+j− 2 H(n)
in=
n+1−j
∑s=1ψ 2 n−sn
∑i=1hi,s+j− 1 H(n)
in