288 6. Applications of Determinants in Mathematical Physics
brs=ω
s−r
ars. (6.10.6)
En=|ers|n=(−1)
n
A
(n+1)
1 ,n+1
=(−1)
n
A
(n+1)
n+1, 1
. (6.10.7)
In some detail,
An=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
u 0 ωu 1 −u 2 −ωu 3 ···
ωu 1 u 0 ωu 1 −u 2 ···
−u 2 ωu 1 u 0 ωu 1 ···
−ωu 3 −u 2 ωu 1 u 0 ···
..............................
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n
(ω
2
=−1), (6.10.8)
Bn=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
u 0 −u 1 u 2 −u 3 ···
u 1 u 0 −u 1 u 2 ···
u 2 u 1 u 0 −u 1 ···
u 3 u 2 u 1 u 0 ···
..........................
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n
, (6.10.9)
En=
∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
ωu 1 u 0 ωu 1 −u 2 ···
−u 2 ωu 1 u 0 ωu 1 ···
−ωu 3 −u 2 ωu 1 u 0 ···
u 4 −ωu 3 −u 2 ωu 1 ···
..............................
∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
n
(ω
2
=−1),(6.10.10)
An=(−1)
n
E
(n+1)
n+1, 1
. (6.10.11)
Anis a symmetric Toeplitz determinant (Section 4.5.2) in whichtr=
ω
r
ur. All the elements on and below the principal diagonal of Bn are
positive. Those above the principal diagonal are alternately positive and
negative.
The notation is simplified by omitting the ordernfrom a determinant
or cofactor where there is no risk of confusion. ThusAn,A
(n)
ij
,A
ij
n
, etc.,
may appear asA,Aij,A
ij
, etc. Where the order is not equal ton, the
appropriate order is shown explicitly.
A and E, and their simple and scaled cofactors are related by the
following identities:
A 11 =Ann=An− 1 ,
A 1 n=An 1 =(−1)
n− 1
En− 1 ,
Ep 1 =(−1)
n− 1
Apn,
Enq=(−1)
n− 1
A 1 q,
En 1 =(−1)
n− 1
An− 1 , (6.10.12)
(
A
E
) 2
=
(
E
n 1
A
11
) 2
, (6.10.13)
E
2
E
p 1
E
nq
=A
2
A
pn
A
1 q
. (6.10.14)
Lemma 6.17.