6.10 The Einstein and Ernst Equations 295Exercise.The one-variable Hirota operatorsHxandHxxare defined in
Section 5.7 and the determinantsAnandEn, each of which is a function of
ρandz, are defined in (6.10.8) and (6.10.10). Apply Lemma 6.20 to prove
that
Hρ(An− 1 ,En)−ωHz(An,En− 1 )=(
n− 1ρ)
An− 1 En,Hρ(An,En− 1 )−ωHz(An− 1 ,En)=−(
n− 2ρ)
AnEn− 1 (ω2
=−1).Using the notation
K
2
(f, g)=(
Hρρ+1
ρHρ+Hzz)
(f, g),wheref=f(ρ, z) andg=g(ρ, z), prove also that
K
2
(En,An)=n(n−2)ρ
2EnAn,{
K
2
+2 n− 4ρ}
(An,An− 1 )=−1
ρ
2AnAn− 1 ,K
2{
ρn(n−2)/ 2
En,ρn(n−2)/ 2
An}
=0,
K
2{
ρ(n
2
− 4 n+2)/ 2
An− 1 ,ρn(n−2)/ 2
An}
=0,
K
2{
ρ(n
2
−2)/ 2
An+1,ρn(n−2)/ 2
An}
=0.
(Sasa and Satsuma)6.10.4 Preparatory Theorems
Define a Vandermondian (Section 4.1.2)V 2 n(x) as follows:
V 2 n(x)=∣
∣
xj− 1
i∣
∣
2 n=V(x 1 ,x 2 ,...,x 2 n), (6.10.24)and let the (unsigned) minors ofV 2 n(c) be denoted byM
(2n)
ij
(c). Also, letMi(c)=M(2n)
i, 2 n
(c)=V(c 1 ,c 2 ,...,ci− 1 ,ci+1,...,c 2 n),M 2 n(c)=M(2n)
2 n, 2 n(c)=V^2 n−^1 (c). (6.10.25)xj=z+cjρ,
εj=eωθj√
1+x
2
j
(ω2
=−1)=
τjρ