Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.10 The Einstein and Ernst Equations 295

Exercise.The one-variable Hirota operatorsHxandHxxare defined in


Section 5.7 and the determinantsAnandEn, each of which is a function of


ρandz, are defined in (6.10.8) and (6.10.10). Apply Lemma 6.20 to prove


that


Hρ(An− 1 ,En)−ωHz(An,En− 1 )=

(

n− 1

ρ

)

An− 1 En,

Hρ(An,En− 1 )−ωHz(An− 1 ,En)=−

(

n− 2

ρ

)

AnEn− 1 (ω

2
=−1).

Using the notation


K

2
(f, g)=

(

Hρρ+

1

ρ

Hρ+Hzz

)

(f, g),

wheref=f(ρ, z) andg=g(ρ, z), prove also that


K

2
(En,An)=

n(n−2)

ρ
2

EnAn,

{

K

2
+

2 n− 4

ρ

}

(An,An− 1 )=−

1

ρ
2

AnAn− 1 ,

K

2

{

ρ

n(n−2)/ 2
En,ρ

n(n−2)/ 2
An

}

=0,

K

2

{

ρ

(n
2
− 4 n+2)/ 2
An− 1 ,ρ

n(n−2)/ 2
An

}

=0,

K

2

{

ρ

(n
2
−2)/ 2
An+1,ρ

n(n−2)/ 2
An

}

=0.

(Sasa and Satsuma)

6.10.4 Preparatory Theorems


Define a Vandermondian (Section 4.1.2)V 2 n(x) as follows:


V 2 n(x)=



x

j− 1
i



2 n

=V(x 1 ,x 2 ,...,x 2 n), (6.10.24)

and let the (unsigned) minors ofV 2 n(c) be denoted byM


(2n)
ij
(c). Also, let

Mi(c)=M

(2n)
i, 2 n
(c)=V(c 1 ,c 2 ,...,ci− 1 ,ci+1,...,c 2 n),

M 2 n(c)=M

(2n)
2 n, 2 n(c)=V^2 n−^1 (c). (6.10.25)

xj=

z+cj

ρ

,

εj=e

ωθj


1+x
2
j

2
=−1)

=

τj

ρ

, (6.10.26)
Free download pdf