6.10 The Einstein and Ernst Equations 299
6.10.5 Physically Significant Solutions
From the theorem in Section 6.10.2 on the intermediate solution,
φ 2 n+1=
ρ
2 n− 1
A 2 n
A 2 n− 1
,
ψ 2 n+1=
ωρ
2 n− 1
A
(2n+1)
1 , 2 n+1
A 2 n− 1
(ω
2
=−1). (6.10.46)
Hence the functionsζ+andζ−introduced in Section 6.2.8 can be expressed
as follows:
ζ+=φ 2 n+1+ωψ 2 n+1
=
ρ
2 n− 1
(A 2 n−A
(2n+1)
1 , 2 n+1
)
A 2 n− 1
, (6.10.47)
ζ−=φ 2 n+1−ωψ 2 n+1
=
ρ
2 n− 1
(A 2 n+A
(2n+1)
1 , 2 n+1
)
A 2 n− 1
. (6.10.48)
It is shown in Section 4.5.2 on symmetric Toeplitz determinants that if
An=|t|i−j||n, then
A 2 n− 1 =2Pn− 1 Qn,
A 2 n=PnQn+Pn− 1 Qn+1,
A
(2n+1)
1 , 2 n+1
=PnQn−Pn− 1 Qn+1, (6.10.49)
where
Pn=
1
2
∣
∣t
|i−j|−ti+j
∣
∣
n
Qn=
1
2
∣
∣t
|i−j|+ti+j− 2
∣
∣
n
. (6.10.50)
Hence,
ζ+=
ρ
2 n− 1
Qn+1
Qn
,
ζ−=
ρ
2 n− 1
Pn
Pn− 1
. (6.10.51)
In the present problem,tr=ω
r
ur(ω
2
=−1), whereuris a solution of the
coupled equations (6.10.3) and (6.10.4). In order to obtain the Neugebauer
solutions, it is necessary first to choose the solution given by equations
(A.11.8) and (A.11.9) in Appendix A.11, namely
ur=(−1)
r
2 n
∑
j=1
ejfr(xj)
√
1+x
2
j
,xj=
z+cj
ρ
, (6.10.52)
and then to choose
ej=(−1)
j− 1
Mj(c)e
ωθj
. (6.10.53)