Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

298 6. Applications of Determinants in Mathematical Physics


where


Em=

m

r=1

εk
r

,

K=

m

r=1

(kr−1). (6.10.39)

Applying Theorem (c) in Section 4.1.8 on Vandermondian identities,


Ym=(−1)

K
Em

V(ck
m+1
,ck
m+2
,...,ck
2 n
){V 2 n(c)}
m− 1

V(ck
1
,ck
2
,...,ck
m

)

. (6.10.40)

Hence,


Wm=

(−1)

K
{V 2 n(c)}
m− 1

ρ
m(m−1)


1 ≤k 1 <k 2 <...<km≤ 2 n

·EmV(ck 1 ,ck 2 ,...,ckm)V(ckm+1,ckm+2,...,ck 2 n).(6.10.41)

Using the Laplace formula (Section 3.3) to expandH

(m)
2 n
(ε) by the first

mrows and the remaining (2n−m) rows and referring to the exercise at


the end of Section 4.1.8,


H

(m)
2 n
(ε)=


1 ≤k 1 <k 2 <···<km≤ 2 n

N 12 ···m;k
1 ,k 2 ,...,km
A 12 ···m;k
1 ,k 2 ,...,km

,

(6.10.42)

where


N 12 ···m;k
1 ,k 2 ,...,km
=EmV(ck
1
,ck
2
,...,ck
m

),

A 12 ···m;k
1 ,k 2 ,...,km

=(−1)

R
M 12 ···m;k
1 ,k 2 ,...,km

=(−1)

R
V(ck
m+1
,ck
m+2
,...,ck
2 n

), (6.10.43)

whereMis the unsigned minor associated with the cofactorAandRis


the sum of their parameters. Referring to (6.10.39),


R=

1
2

m(m+1)+

m

r=1

kr

=K+

1
2

m(m−1). (6.10.44)

Hence,


H

(m)
2 n
(ε)=(−1)

R


1 ≤k 1 <k 2 <···<km≤ 2 n

EmV(ck
1
,ck
2
,...,ck
m

)

·V(ckm+1,ckm+2,...,ck 2 n)

=

(−ρ

2
)

m(m−1)/ 2

{V 2 n(c)}
m− 1

Wm, (6.10.45)

which proves part (a) of the theorem. Part (b) can be proved in a similar


manner. 

Free download pdf