306 Appendix
Other applications are found in Appendix A.4 on Appell polynomials.
Γ(x)=
∫∞
0
e
−t
t
x− 1
dt,
Γ(x+1)=xΓ(x)
Γ(n+1)=n!,n=1, 2 , 3 ,....
The Legendre duplication formula is
√
πΓ(2x)=2
2 x− 1
Γ(x)Γ
(
x+
1
2
)
,
which is applied in Appendix A.8 on differences.
Stirling Numbers
The Stirling numbers of the first and second kinds, denoted bysijandSij,
respectively, are defined by the relations
(x)r=
r
∑
k=0
srkx
k
,sr 0 =δr 0 ,
x
r
=
r
∑
k=0
Srk(x)k,Sr 0 =δr 0 ,
where (x)ris the falling factorial function defined as
(x)r=x(x−1)(x−2)···(x−r+1),r=1, 2 , 3 ,....
Stirling numbers satisfy the recurrence relations
sij=si− 1 ,j− 1 −(i−1)si− 1 ,j
Sij=Si− 1 ,j− 1 +jSi− 1 ,j.
Some values of these numbers are given in the following short tables:
sij
j
i 12345
1 1
2 − 11
3 2 − 31
4 − 611 − 61
5 24 − 50 35 −10 1