Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
A.4 Appell Polynomials 319

These polynomials can be displayed in matrix form as follows:


Let

U(x)=




u 00 u 01 u 02 ···

u 10 u 11 u 12 ···

u 20 u 21 u 22 ···

··· ··· ··· ···



.

Then,


U(x)=e

xQ
U(0)

(

e

xQ

)T

.

Hence,


U(0) =e

−xQ
U(x)

(

e

−xQ

)T

,

that is,


αij=

i

r=0

j

s=0

(

i

r

)(

j

s

)

urs(−x)

i+j−r−s
,i,j=0, 1 , 2 ,....

Other solutions of (A.4.12) can be expressed in terms of simple Appell


polynomials; for example,


uij=φiφj,

uij=





φi φj

φi+1 φj+1





.

Solutions of the three-parameter Appell equation, namely


u


ijk=iui−^1 ,j,k+jui,j−^1 ,k+kuij,k−^1 ,

include


uijk=φiφjφk,

uijk=

∣ ∣ ∣ ∣ ∣ ∣

φi φj φk

φi+1 φj+1 φk+1

φi+2 φj+2 φk+2

∣ ∣ ∣ ∣ ∣ ∣

.

Carlson has studied polynomialsφm(x,y,z,...) which satisfy the relation


(Dx+Dy+Dz+···)φm=mφm− 1 ,Dx=


∂x

,etc.,

and Carlitz has studied polynomialsφmnp...(x,y,z,...) which satisfy the


relations


Dx(φmnp...)=mφm− 1 ,np...,

Dy(φmnp...)=nφm,n− 1 ,p...,

Dz(φmnp...)=pφmn,p− 1 ,....
Free download pdf