A.4 Appell Polynomials 319
These polynomials can be displayed in matrix form as follows:
Let
U(x)=
u 00 u 01 u 02 ···
u 10 u 11 u 12 ···
u 20 u 21 u 22 ···
··· ··· ··· ···
.
Then,
U(x)=e
xQ
U(0)
(
e
xQ
)T
.
Hence,
U(0) =e
−xQ
U(x)
(
e
−xQ
)T
,
that is,
αij=
i
∑
r=0
j
∑
s=0
(
i
r
)(
j
s
)
urs(−x)
i+j−r−s
,i,j=0, 1 , 2 ,....
Other solutions of (A.4.12) can be expressed in terms of simple Appell
polynomials; for example,
uij=φiφj,
uij=
∣
∣
∣
∣
φi φj
φi+1 φj+1
∣
∣
∣
∣
.
Solutions of the three-parameter Appell equation, namely
u
′
ijk=iui−^1 ,j,k+jui,j−^1 ,k+kuij,k−^1 ,
include
uijk=φiφjφk,
uijk=
∣ ∣ ∣ ∣ ∣ ∣
φi φj φk
φi+1 φj+1 φk+1
φi+2 φj+2 φk+2
∣ ∣ ∣ ∣ ∣ ∣
.
Carlson has studied polynomialsφm(x,y,z,...) which satisfy the relation
(Dx+Dy+Dz+···)φm=mφm− 1 ,Dx=
∂
∂x
,etc.,
and Carlitz has studied polynomialsφmnp...(x,y,z,...) which satisfy the
relations
Dx(φmnp...)=mφm− 1 ,np...,
Dy(φmnp...)=nφm,n− 1 ,p...,
Dz(φmnp...)=pφmn,p− 1 ,....