Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

364 Bibliography


Y. Ohta, R. Hirota, S. Tsujimoto, T. Imai, Casorati and discrete Gram type


determinant representation of solutions to the discrete KP hierarchy.J. Phys.

Soc. Japan 62 (1993), 1872–1886. [PA (1994), 10461.]

Y. Ohta, K. Kajiwara, J. Matsukidaira, J. Satsuma, Casorati determinant so-


lution for the relativistic Toda lattice equation.J. Math. Phys. 34 (1993),

5190–5204. [PA (1994), 10461; MR 95a: 35137].

K. Okamoto, B ̈acklund transformations of classical orthogonal polynomials.Al-


gebraic AnalysisVol. II, Academic Press, Boston, 1988, pp. 647–657. [MR 90j:

33012.]

R. Oldenburger, Higher dimensional determinants.Am. Math. Monthly 47 (1940),


25–33. [MR 1 (1940), 194.]

F.R. Olsen, Some determinants involving Bernoulli and Euler numbers of higher


order.Pacific J. Math. 5 (1955), 259–268. [MR 16 (1955), 988.]

F.R. Olsen, Some special determinants.Am. Math. Monthly 63 (1956), 612.


P.J. Olver, Hyperjacobians, determinantal ideals and weak solutions to vari-


ational problems. Proc. Roy. Soc. Edin. 95 (1983), 317–340. [MR 85c:

58040.]

O. Ore, Some studies of cyclic determinants.Duke Math. J. 18 (1951), 343–354.


[MR 13 (1952), 98.]

A. Ostrowski,Collected Mathematical Papers, Vol. 1, Birkh ̈auser, Boston, 1983–



  1. [MR 86m: 01075.]


D. Pandres, On higher ordered differentiationAm. Math. Monthly 64 (1957),


566–572.

D. Pandres, A determinant representation of the classical orthogonal polynomials.


Am. Math. Monthly 67 (1960), 658–659. [MR24a(1962), 3316.]

D.H. Pandya, A property in determinants.Math. Educ. Sec.B9, no.3, (1975),


56–57. [Zbl 341 (1977), 15008.]

S. Parameswaran, Skew-symmetric determinants.Am. Math. Monthly 61 (1954),


116.

M. Parodi, Sur les polynˆomes de Bessel.C.R. Acad. Sci. Paris S ́er. A–B 274


(1972), A1153–1155. [MR 46 (1973), 416.]

E. Pascal,Die Determinanten, Druck und Verlag von B.G. Teubner, Leipzig,


1900.

D. Pelinovsky, Rational solutions of the Kadomtsev–Petviashvili hierarchy and


the dynamics of their poles, 1. New form of a general rational solution.J.

Math. Phys. 35 (1994), 5820–5830. [MR 95h: 58071.]

D. Piccini, Dieudonn ́e determinant and invariant real polynomials on gl(n, H).


Rendiconte 2 (1982), 31–45. [MR 83k: 55012.]

L.A. Pipes, Cyclical functions and permutation matrices.J. Franklin Inst. 287


(1969), 285–296. [MR 39 (1970), 7148.]

A.V. Pogorelov, A priori estimates for solutions of the equation det(zij)=


φ(z 1 ,z 2 ,...,zn, z, x 1 ,x 2 ,...,xn). Dokl. Akad. Nauk SSSR 272 (1983),

792–794. [MR 85i: 35022.]

G. P ́olya, G. Szeg ̈o,Problems and Theorems in Analysis, Vol.2, Springer-Verlag,


New York, Heidelberg, 1976. [MR 49 (1975), 8781; MR 53 (1977), 2.]
Free download pdf