3.5 The Adjoint Determinant 37Proof.
AadjA=|aij|n|Aji|n=|bij|n,where, referring to Section 3.3.5 on the product of two determinants,
bij=n
∑r=1airAjr=δijA.Hence,
|bij|n= diag|A A ... A|n=A
nThe theorem follows immediately ifA=0.IfA= 0, then, applying (2.3.16)
with a change in notation,|Aij|n= 0, that is, adjA= 0. Hence, the Cauchy
identity is valid for allA.
3.5.3 An Identity Involving a Hybrid Determinant
LetAn=|aij|nandBn=|bij|n, and letHijdenote the hybrid determinant
formed by replacing thejth row ofAnby theith row ofBn. Then,
Hij=n
∑s=1bisAjs. (3.5.2)Theorem.
|aijxi+bij|n=An∣
∣
∣
∣
δijxi+HijAn∣
∣
∣
∣
n,An=0.In the determinant on the right, thexiappear only in the principal diagonal.
Proof. Applying the Cauchy identity in the form
|Aji|n=An− 1
nand the formula for the product of two determinants (Section 1.4),
|aijxi+bij|nAn− 1
n =|aijxi+bij|n|Aji|n=|cij|n,where
cij=n
∑s=1(aisxi+bis)Ajs=xin
∑s=1aisAjs+n
∑s=1bisAjs=δijAnxi+Hij.