42 3. Intermediate Determinant Theory
=−
∑
r∑
sδrpδsqAis
Arj=−A
iq
Apj=−
1
A
2[AiqApj]. (3.6.7)Hence,
∣
∣
∣
∣Aij AiqApj Apq∣
∣
∣
∣
=AAip,jq, (3.6.8)which, when the parameternis restored, is equivalent to (3.6.4). The
formula given in the theorem follows by scaling the cofactors.
Theorem 3.5.
∣ ∣ ∣ ∣ ∣ ∣
Aij
Aiq
AivA
pj
Apq
ApvA
uj
Auq
Auv∣ ∣ ∣ ∣ ∣ ∣
=A
ipu,jqv
,where the cofactors are scaled.
Proof. From (3.2.4) and Theorem 3.4,
∂
2
A∂apq∂auv=Apu,qv=AA
pu,qv=A
∣
∣
∣
∣
A
pq
A
pvA
uq
A
uv∣
∣
∣
∣
. (3.6.9)
Hence, referring to (3.6.7) and the formula for the derivative of a
determinant (Section 2.3.7),
∂
3
A∂aij∂apq∂auv=
∂A
∂aij∣
∣
∣
∣
A
pq
ApvA
uq
Auv∣
∣
∣
∣
+A
∣
∣
∣
∣
∣
∂A
pq∂aijA
pv∂A
uq∂aijA
uv∣
∣
∣
∣
∣
+A
∣
∣
∣
∣
∣
A
pq ∂A
pv∂aijAuq ∂A
uv∂aij∣
∣
∣
∣
∣
= Aij∣
∣
∣
∣
A
pq
ApvA
uq
Auv∣
∣
∣
∣
−AA
iq∣
∣
∣
∣
A
pj
ApvA
uj
Auv∣
∣
∣
∣
−AA
iv∣
∣
∣
∣
A
pq
ApjA
uq
Auj∣
∣
∣
∣
=
1
A
2[
Aij∣
∣
∣
∣
Apq ApvAuq Auv∣
∣
∣
∣
−Aiq∣
∣
∣
∣
Apj ApvAuj Auv∣
∣
∣
∣
+Aiv∣
∣
∣
∣
Apj ApqAuj Auq∣
∣
∣
∣
]
=
1
A
2∣ ∣ ∣ ∣ ∣ ∣
Aij Aiq AivApj Apq ApvAuj Auq Auv