54 4. Particular Determinants
Postmultiply the VandermondianVn(x)orVn(x 1 ,x 2 ,...,xn)byAn,prove the reduction formulaVn(x 1 ,x 2 ,...,xn)=Vn− 1 (x 2 −x 1 ,x 3 −x 1 ,...,xn−x 1 )n
∏p=2(xp−x 1 ),and hence evaluateVn(x).2.Prove that|xj− 1
i yn−j
i |n=∏
1 ≤r<s≤n∣
∣
∣
∣
yr xrys xs∣
∣
∣
∣
3.Ifxi=z+ciρ,
prove that|xj− 1
i
|n=ρ−n(n−1)/ 2
|cj− 1
i
|n,which is independent ofz. This relation is applied in Section 6.10.3 onthe Einstein and Ernst equations.4.1.3 Cofactors of the Vandermondian...........
Theorem 4.1. The scaled cofactors of the VandermonianXn=|xij|n,
wherexij=x
j− 1
i
are given by the quotient formulaX
ij
n=(−1)
n−j
σ(n)
i,n−jgni(xi),
where
gnr(x)=n− 1
∑s=0(−1)
s
σ(n)
rs
xn− 1 −s
.Notes on the symmetric polynomialsσ
(n)
rs and the functiongnr(x)are givenin Appendix A.7.
Proof. Denote the quotient byFij. Then,
n
∑k=1xikFjk=1
gnj(xj)n
∑k=1(−1)
n−k
σ(n)
j,n−k
xk− 1
i
(Putk=n−s)=
1
gnj(xj)n− 1
∑s=0(−1)
s
σ(n)
js
xn−s− 1
i=
gnj(xi)gnj(xj)=δij.