4.1 Alternants 55Hence,
[xij]n[Fji]n=I,[Fji]n=[xij]− 1=[X
ji
n
]n.The theorem follows.
Theorem 4.2.
X
(n)
nj =(−1)n−j
Xn− 1 σ(n−1)
n−j.Proof. Referring to equations (A.7.1) and (A.7.3) in Appendix A.7,
Xn=Xn− 1n− 1
∏r=1(xn−xr)=Xn− 1 fn− 1 (xn)=Xn− 1 gnn(xn).From Theorem 4.1,
X
(n)
nj=
(−1)
n−j
Xnσ(n)
n,n−jgnn(xn)=(−1)
n−j
Xn− 1 σ(n)
n,n−j.The proof is completed using equation (A.7.4) in Appendix A.7.
4.1.4 A Hybrid Determinant
LetYnbe a second Vandermondian defined as
Yn=|yj− 1
i
|nand letHrsdenote the hybrid determinant formed by replacing therth
row ofXnby thesth row ofYn.
Theorem 4.3.
HrsXn=
gnr(ys)gnr(xr).
Proof.
HrsXn=
n
∑j=1yj− 1
s Xrj
n=
1
gnr(xr)n
∑j=1(−1)
n−j
σ(n)
r,n−j
yj− 1
s
(Putj=n−k)=
1
gnr(xr)n− 1
∑k=0(−1)
k
σ(n)
rk
yn− 1 −k
s