56 4. Particular Determinants
This completes the proof of Theorem 4.3 which can be expressed in the
form
HrsXn=
∏ni=1(ys−xi)(ys−xr)∏ni=1
i=r(xr−xi).
LetAn=|σ(m)
i,j− 1
|n=
∣
∣
∣
∣
∣
∣
∣
∣
σ(m)
10
σ(m)
11
... σ(m)
1 ,n− 1σ(m)
20 σ(m)
21 ... σ(m)
2 ,n− 1........................σ(m)
n 0 σ(m)
n 1 ... σ(m)
n,n− 1∣
∣
∣
∣
∣
∣
∣
∣
n,m≥n.Theorem 4.4.
An=(−1)n(n−1)/ 2
Xn.Proof.
An=∣
∣C
0 C 1 C 2 ...Cn− 1 ,∣
∣
nwhere, from the lemma in Appendix A.7,
Cj=[
σ(m)
1 j
σ(m)
2 j
σ(m)
3 j
... σ(m)
nj]T
=
j
∑p=0σ(m)
p[
vj−p
1 vj−p
2 vj−p
3 ... vj−p
n]T
,vr=−xr,σ(m)
0 =1.Applying the column operations
C
′
j
=Cj−j
∑k=1σ(m)
k
Cj−kin the orderj=1, 2 , 3 ,...so that each new column created by one operation
is applied in the next operation, it is found that
C
′
j=
[
vj
1
vj
2
vj
3
... vj
n]T
,j=0, 1 , 2 ,....Hence
An=|vj− 1
i
|n=(−1)
n(n−1)/ 2
|xj− 1
i
|n.Theorem 4.4 follows.