74 4. Particular Determinants
The coefficient ofar, 2 n,1≤r≤(2n−1), in Pfnis found by putting(is,js)=(r, 2 n) for any value ofs. Chooses= 1. Then, the coefficient is
∑σrai 2 j 2 ai 3 j 3 ···ainjn,where
σr= sgn
{
12 34...(2n−1) 2nr 2 ni 2 j 2 ... in jn}
2 n= sgn{
1234 ...(2n−1) 2nri 2 j 2 i 3 ... jn 2 n}
2 n= sgn{
1234 ...(2n−1)ri 2 j 2 i 3 ... jn}
2 n− 1(4.3.18)
=(−1)
r+1
sgn{
1234 ...(r−1)r(r+1)...(2n−1)i 2 j 2 i 3 j 3 ... r ... jn}
2 n− 1,r> 1=(−1)
r+1
sgn{
1234 ...(r−1)(r+1)...(2n−1)i 2 j 2 i 3 j 3 ... ... ... jn}
2 n− 2,r> 1.From (4.3.18),
σ 1 = sgn{
1234 ... (2n−1)1 i 2 j 2 i 3 ... jn}
2 n− 1= sgn{
234 ... (2n−1)i 2 j 2 i 3 ... jn}
2 n− 2.
Hence,
Pfn=2 n− 1
∑r=1(−1)
r+1
ar, 2 nPf(n)
r , (4.3.19)where
Pf
(n)
r=
∑
sgn{
1234 ···(r−1)(r+1)···(2n−2) (2n−1)i 2 j 2 i 3 j 3 ··· ··· ··· in jn}
2 n− 2×ai 2 j 2 ai 3 j 3 ···ainjn, 1 <r≤ 2 n− 1 , (4.3.20)which is a Pfaffian of order (n−1) in which no element contains the row
parameterror the column parameter 2n. In particular,
Pf(n)
2 n− 1=
∑
sgn{
1234 ··· (2n−3) (2n−2)i 2 j 2 i 3 j 3 ··· in jn}
2 n− 2=Pfn− 1. (4.3.21)Thus, a Pfaffian of orderncan be expressed as a linear combination of
(2n−1) Pfaffians of order (n−1).