76 4. Particular Determinants
which is consistent with (4.3.22). Hence,
A
(2n−1)
ij=(−1)
i+j
Pf(n)
i
Pf(n)
j. (4.3.24)
Returning to (4.3.11) and referring to (4.3.19),
A 2 n=[
2 n− 1
∑i=1(−1)
i+1
Pf(n)
i
ai, 2 n]
2 n− 1
∑j=1(−1)
j+1
Pf(n)
j
aj, 2 n
=
[
2 n− 1
∑i=1(−1)
i+1
Pf(n)
i
ai, 2 n] 2
= [Pfn]2
,which completes the proof of the theorem.
The notation for Pfaffians consists of a triangular array of the elementsaijfor whichi<j:
Pfn=|a 12 a 13 a 14 ··· a 1 , 2 na 23 a 24 ··· a 2 , 2 na 34 ··· a 3 , 2 n.........a 2 n− 1 , 2 n∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
2 n− 1. (4.3.25)
Pfnis a polynomial function of then(2n−1) elements in the array.
Illustrations
From (4.3.16), (4.3.17), and (4.3.25),
Pf 1 =|a 12 |=a 12 ,Pf 2 =∣
∣
a 12 a 13 a 14a 23 a 24a 34∣ ∣ ∣ ∣ ∣ ∣
=a 12 a 34 −a 13 a 24 +a 14 a 23.It is left as an exercise for the reader to evaluate Pf 3 directly from the defini-
tion (4.3.13) with the aid of the notes given in the section on permutations
associated with Pfaffians in Appendix A.2 and to show that
Pf 3 =∣
∣a
12 a 13 a 14 a 15 a 16a 23 a 24 a 25 a 26a 34 a 35 a 36a 45 a 46a 56∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
=a 16∣
∣
a 23 a 24 a 25a 34 a 35a 45∣ ∣ ∣ ∣ ∣ ∣
−
a 26∣
∣
a 13 a 14 a 15a 34 a 35a 45∣ ∣ ∣ ∣ ∣ ∣
+
a 36∣
∣
a 12 a 14 a 15a 24 a 25a 45