82 4. Particular Determinants
Hence,
WW=[αrs]n,where
αrs=n
∑t=1ω(r−1)(t−1)−(t−1)(s−1)=
n
∑t=1ω(t−1)(r−s)
,αrr=n. (4.4.14)Putk=r−s,s=r. Then, referring to (4.4.6),
αrs=n
∑t=1ω(t−1)k
(ωk
=ωk
1
=ωk)=
n
∑t=1ωt− 1
k=0,s=r. (4.4.15)Hence,
[αrs]=nI,WW=nI.The lemma follows.
Thengeneralized hyperbolic functionsHr,1≤r≤n, of the (n−1)independent variablesxr,1≤r≤n−1, are defined by the matrix equation
H=
1
nWE, (4.4.16)
whereHandEare column vectors defined as follows:
H=
[
H 1 H 2 H 3 ...Hn]T
,
E=
[
E 1 E 2 E 3 ...En]
T
,Er= exp[
n− 1
∑t=1ω(r−1)t
xt]
, 1 ≤r≤n. (4.4.17)Lemma 4.19.
n
∏r=1Er=1.Proof. Referring to (4.4.15),
n
∏r=1Er=n
∏r=1exp[
n− 1
∑t=1ω(r−1)t
xt