4.4 Circulants 83= exp[
n
∑r=1n− 1
∑t=1ω(r−1)t
xt]
= exp[
n− 1
∑t=1xtn
∑r=1ω(r−1)t]
= exp(0).The lemma follows.
Theorem.
A=A(H 1 ,H 2 ,H 3 ,...,Hn)=1.Proof. The definition (4.4.16) implies that
A(H 1 ,H 2 ,H 3 ,...,Hn)=
H 1 H 2 H 3 ··· HnHn H 1 H 2 ··· Hn− 1Hn− 1 Hn H 1 ··· Hn− 2··· ··· ··· ··· ···H 2 H 3 H 4 ··· H 1     n=W
− 1
diag(
E 1 E 2 E 3 ...En)
W. (4.4.18)
Taking determinants,
A(H 1 ,H 2 ,H 3 ,...,Hn)=∣
∣
W
− 1
W∣
∣
n
∏r=1Er.The theorem follows from Lemma 4.19.
Illustrations
Whenn=2,ω= exp(iπ)=−1.
W=
[
11
1 − 1
]
,
W
− 1
=1
2W,
Er= exp[(−1)r− 1
x 1 ],r=1, 2.Letx 1 →x; then,
E 1 =ex
,E 2 =e−x
,
[
H 1H 2]
=
1
2
[
11
1 − 1
][
e
xe
−x]
,
H 1 =chx,H 2 =shx,