5.2 The Principle of the Stationary Value 113Fig.5.2
Load–deflection curve for a linearly elastic member.
Hence,
dU
dy=P
dU
dP=
1
n(
P
b) 1 /n
=1
ny (5.3)dC
dP=ydC
dy=bnyn=nP (5.4)Whenn=1,
dU
dy=
dC
dy=P
dU
dP=
dC
dP=y⎫
⎪⎪
⎬
⎪⎪
⎭
(5.5)
andthestrainandcomplementaryenergiesarecompletelyinterchangeable.Suchaconditionisfoundin
alinearlyelasticmember;itsrelatedload–deflectioncurveisshowninFig.5.2.Clearly,areaOBD(U)
isequaltoareaOBA(C).
It will be observed that the latter of Eqs. (5.5) is in the form of what is commonly known as
Castigliano’sfirsttheorem,inwhichthedifferentialofthestrainenergyUofastructurewithrespectto
aloadisequatedtothedeflectionoftheload.Tobemathematicallycorrect,however,itisthedifferential
ofthecomplementaryenergyCwhichshouldbeequatedtodeflection(compareEqs.(5.3)and(5.4)).
5.2 ThePrincipleoftheStationaryValueoftheTotalComplementaryEnergy..................
ConsideranelasticsysteminequilibriumsupportingforcesP 1 ,P 2 ,...,Pnwhichproducerealcorre-
spondingdisplacements 1 , 2 ,..., (^) n.IfweimposevirtualforcesδP 1 ,δP 2 ,...,δPnonthesystem
actingthroughtherealdisplacements,thenthetotalvirtualworkdonebythesystem(seeChapter4)is
−
∫
volydP+∑nr= 1(^) rδPr