Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

132 CHAPTER 5 Energy Methods


butthedirectloadshaveavalueP/2.Thetotalcomplementaryenergyofthesystemis(againignoring
shearstrains)


C=


ring

∫M

0

dθdM− 2

(

P

2

)

taking the bending moment as positive when it increases the curvature of the ring. In the preceding
expressionforC, isthedisplacementofthetop,A,oftheringrelativetothebottom,B.Assigninga
stationaryvaluetoC,wehave


∂C
∂MA

=


ring


∂M

∂MA

= 0

orassuminglinearelasticityandconsidering,fromsymmetry,halfthering


∫πR

0

M

EI

∂M

∂MA

ds= 0

Thus,since


M=MA−

P

2

Rsinθ

∂M

∂MA

= 1

andwehave


∫π

0

(

MA−

P

2

Rsinθ

)

Rdθ= 0

or
[
MAθ+


P

2

Rcosθ


0

= 0

fromwhich


MA=

PR

π

Thebendingmomentdistributionisthen


M=PR

(

1

π


sinθ
2

)

andisshowndiagrammaticallyinFig.5.15.
Letusnowconsideramorerepresentativeaircraftstructuralproblem.Thecircularfuselageframe
ofFig.5.16(a)supportsaloadPwhichisreactedbyashearflowq(i.e.,ashearforceperunitlength:
seeChapter15),distributedaroundthecircumferenceoftheframefromthefuselageskin.Thevalue
anddirectionofthisshearflowarequotedherebutarederivedfromtheoryestablishedinSection15.3.
From our previous remarks on the effect of symmetry, we observe that there is no shear force at the
sectionAontheverticalplaneofsymmetry.TheunknownsarethereforethebendingmomentMAand

Free download pdf