7.1 Pure Bending of Thin Plates 221SubstitutingforεxandεyfromEqs.(7.1)into(7.2)andrearranginggives
σx=Ez
1 −ν^2(
1
ρx+
ν
ρy)
σy=Ez
1 −ν^2(
1
ρy+
ν
ρx)
⎫
⎪⎪
⎪⎬
⎪⎪
⎪⎭
(7.3)
Aswouldbeexpectedfromourassumptionofplanesectionsremainingplane,thedirectstressesvary
linearlyacrossthethicknessoftheplate,theirmagnitudesdependingonthecurvatures(i.e.,bending
moments) of the plate. The internal direct stress distribution on each vertical surface of the element
mustbeinequilibriumwiththeappliedbendingmoments.Thus,
Mxδy=∫t/^2−t/ 2σxzδydzand
Myδx=∫t/^2−t/ 2σyzδxdzSubstitutingforσxandσyfromEqs.(7.3)gives
Mx=∫t/^2−t/ 2Ez^2
1 −ν^2(
1
ρx+
ν
ρy)
dzMy=∫t/^2−t/ 2Ez^2
1 −ν^2(
1
ρy+
ν
ρx)
dzLet
D=
∫t/^2−t/ 2Ez^2
1 −ν^2dz=
Et^3
12 ( 1 −ν^2 )(7.4)
Then,
Mx=D(
1
ρx+
ν
ρy)
(7.5)
My=D(
1
ρy+
ν
ρx)
(7.6)
inwhichDisknownastheflexuralrigidityoftheplate.