7.1 Pure Bending of Thin Plates 221
SubstitutingforεxandεyfromEqs.(7.1)into(7.2)andrearranginggives
σx=
Ez
1 −ν^2
(
1
ρx
+
ν
ρy
)
σy=
Ez
1 −ν^2
(
1
ρy
+
ν
ρx
)
⎫
⎪⎪
⎪⎬
⎪⎪
⎪⎭
(7.3)
Aswouldbeexpectedfromourassumptionofplanesectionsremainingplane,thedirectstressesvary
linearlyacrossthethicknessoftheplate,theirmagnitudesdependingonthecurvatures(i.e.,bending
moments) of the plate. The internal direct stress distribution on each vertical surface of the element
mustbeinequilibriumwiththeappliedbendingmoments.Thus,
Mxδy=
∫t/^2
−t/ 2
σxzδydz
and
Myδx=
∫t/^2
−t/ 2
σyzδxdz
SubstitutingforσxandσyfromEqs.(7.3)gives
Mx=
∫t/^2
−t/ 2
Ez^2
1 −ν^2
(
1
ρx
+
ν
ρy
)
dz
My=
∫t/^2
−t/ 2
Ez^2
1 −ν^2
(
1
ρy
+
ν
ρx
)
dz
Let
D=
∫t/^2
−t/ 2
Ez^2
1 −ν^2
dz=
Et^3
12 ( 1 −ν^2 )
(7.4)
Then,
Mx=D
(
1
ρx
+
ν
ρy
)
(7.5)
My=D
(
1
ρy
+
ν
ρx
)
(7.6)
inwhichDisknownastheflexuralrigidityoftheplate.