222 CHAPTER 7 Bending of Thin Plates
Ifwisthedeflectionofanypointontheplateinthezdirection,thenwemayrelatewtothecurvature
oftheplateinthesamemannerasthewell-knownexpressionforbeamcurvature.Hence
1
ρx
=−
∂^2 w
∂x^2
1
ρy
=−
∂^2 w
∂y^2
thenegativesignsresultingfromthefactthatthecentersofcurvatureoccurabovetheplateinwhich
regionzisnegative.Equations(7.5)and(7.6)thenbecome
Mx=−D
(
∂^2 w
∂x^2
+ν
∂^2 w
∂y^2
)
(7.7)
My=−D
(
∂^2 w
∂y^2
+ν
∂^2 w
∂x^2
)
(7.8)
Equations(7.7)and(7.8)definethedeflectedshapeoftheplateprovidedthatMxandMyareknown.If
eitherMxorMyiszero,then
∂^2 w
∂x^2
=−ν
∂^2 w
∂y^2
or
∂^2 w
∂y^2
=−ν
∂^2 w
∂x^2
andtheplatehascurvaturesofoppositesigns.ThecaseofMy=0isillustratedinFig.7.3.Asurface
possessingtwocurvaturesofoppositesignisknownasananticlasticsurface,asopposedtoasynclastic
surface,whichhascurvaturesofthesamesign.Further,ifMx=My=M,thenfromEqs.(7.5)and(7.6)
1
ρx
=
1
ρy
=
1
ρ
Therefore,thedeformedshapeoftheplateissphericalandofcurvature
1
ρ
=
M
D( 1 +ν)
(7.9)
Fig.7.3
Anticlastic bending.