222 CHAPTER 7 Bending of Thin Plates
Ifwisthedeflectionofanypointontheplateinthezdirection,thenwemayrelatewtothecurvature
oftheplateinthesamemannerasthewell-knownexpressionforbeamcurvature.Hence
1
ρx=−
∂^2 w
∂x^21
ρy=−
∂^2 w
∂y^2thenegativesignsresultingfromthefactthatthecentersofcurvatureoccurabovetheplateinwhich
regionzisnegative.Equations(7.5)and(7.6)thenbecome
Mx=−D(
∂^2 w
∂x^2+ν∂^2 w
∂y^2)
(7.7)
My=−D(
∂^2 w
∂y^2+ν∂^2 w
∂x^2)
(7.8)
Equations(7.7)and(7.8)definethedeflectedshapeoftheplateprovidedthatMxandMyareknown.If
eitherMxorMyiszero,then
∂^2 w
∂x^2=−ν∂^2 w
∂y^2or∂^2 w
∂y^2=−ν∂^2 w
∂x^2andtheplatehascurvaturesofoppositesigns.ThecaseofMy=0isillustratedinFig.7.3.Asurface
possessingtwocurvaturesofoppositesignisknownasananticlasticsurface,asopposedtoasynclastic
surface,whichhascurvaturesofthesamesign.Further,ifMx=My=M,thenfromEqs.(7.5)and(7.6)
1
ρx=
1
ρy=
1
ρTherefore,thedeformedshapeoftheplateissphericalandofcurvature
1
ρ=
M
D( 1 +ν)(7.9)
Fig.7.3
Anticlastic bending.