7.3 Plates Subjected to a Distributed Transverse Load 233inwhichmrepresentsthenumberofhalfwavesinthexdirectionandnrepresentsthecorresponding
number in theydirection. Further,Amnare unknown coefficients, which must satisfy the preceding
differentialequationandmaybedeterminedasfollows.
Wemayalsorepresenttheloadq(x,y)byaFourierseries;thus,
q(x,y)=∑∞
m= 1∑∞
n= 1amnsinmπx
asinnπy
b(7.28)
Aparticularcoefficientam′n′iscalculatedbyfirstmultiplyingbothsidesofEq.(7.28)bysin(m′πx/a)
sin(n′πy/b)andintegratingwithrespecttoxfrom0toaandwithrespecttoyfrom0tob.Thus,
∫a0∫b0q(x,y)sinm′πx
asinn′πy
bdxdy=
∑∞
m= 1∑∞
n= 1∫a0∫b0amnsinmπx
asinm′πx
asinnπy
bsinn′πy
bdxdy=
ab
4am′n′since
∫a0sinmπx
asinm′πx
adx=0whenm
=m′=
a
2when m=m′and
∫b0sinnπy
bsinn′πy
bdy=0whenn
=n′=
b
2when n=n′Itfollowsthat
am′n′=4
ab∫a0∫b0q(x,y)sinm′πx
asinn′πy
bdxdy (7.29)Substitutingnowforwandq(x,y)fromEqs.(7.27)and(7.28)intothedifferentialequationforw,we
have
∑∞m= 1∑∞
n= 1{
Amn[(
mπ
a) 4
+ 2
(mπ
a) 2 (nπ
b) 2
+
(nπ
b) 4 ]
−
amn
D}
sinmπx
asinnπy
b