236 CHAPTER 7 Bending of Thin Plates
Differentiatingthedeflectionfunctiongives∂^4 w
∂x^4= 0
∂^4 w
∂y^4= 0
∂^4 w
∂x^2 ∂y^2= 4 A
SubstitutinginEq.(7.20),wehave
0 + 2 × 4 A+ 0 =constant=q
DThedeflectionfunctionisthereforevalidand
A=q
8 DThebendingmomentdistributionsaregivenbyEqs.(7.7)and(7.8);thatis,
Mx=−q
4[y^2 −by+ν(x^2 −ax)](i)My=−
q
4[x^2 −ax+ν(y^2 −by)](ii)Fortheedgesx=0andx=a,
Mx=−q
4(y^2 −by) My=−νq
4(y^2 −by)Fortheedgesy=0andy=b,
Mx=−νq
4(x^2 −ax) My=−q
4(x^2 −ax)7.4 CombinedBendingandIn-PlaneLoadingofaThinRectangularPlate.......................
So far our discussion has been limited to small deflections of thin plates produced by different
formsoftransverseloading.Inthesecases,weassumedthatthemiddleorneutralplaneoftheplate
remainedunstressed.Additionalin-planetensile,compressive,orshearloadswillproducestressesin
the middle plane, and these, if of sufficient magnitude, will affect the bending of the plate. Where
the in-plane stresses are small compared with the critical buckling stresses, it is sufficient to con-
sider the two systems separately; the total stresses are then obtained by superposition. On the other
hand, if the in-plane stresses are not small, then their effect on the bending of the plate must be
considered.
The elevation and plan of a small elementδxδyof the middle plane of a thin deflected plate are
showninFig.7.12.Directandshearforcesperunitlengthproducedbythein-planeloadsaregiventhe
notationNx,Ny,andNxyandareassumedtobeactinginpositivesensesinthedirectionsshown.Since
therearenoresultantforcesinthexorydirectionsfromthetransverseloads(seeFig.7.9),weneed
