Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
7.3 Plates Subjected to a Distributed Transverse Load 235

SubstitutionforwfromEq.(i)intotheexpressionsforbendingmoment,Eqs.(7.7)and(7.8),yields


Mx=

16 q 0
π^4

∑∞

m=1,3,5

∑∞

n=1,3,5

[(m^2 /a^2 )+ν(n^2 /b^2 )]
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2

sin

mπx
a

sin

nπy
b

(iii)

My=

16 q 0
π^4

∑∞

m=1,3,5

∑∞

n=1,3,5

[ν(m^2 /a^2 )+(n^2 /b^2 )]
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2

sin

mπx
a

sin

nπy
b

(iv)

Maximumvaluesoccuratthecenteroftheplate.Forasquareplatea=b,andthefirstfivetermsgive


Mx,max=My,max=0.0479q 0 a^2

ComparingEqs.(7.3)withEqs.(7.5)and(7.6),weobservethat


σx=

12 Mxz
t^3

σy=

12 Myz
t^3

Again,themaximumvaluesofthesestressesoccuratthecenteroftheplateatz=±t/2sothat


σx,max=

6 Mx
t^2

σy,max=

6 My
t^2

Forthesquareplate,


σx,max=σy,max=0.287q 0

a^2
t^2

Thetwistingmomentandshearstressdistributionsfollowinasimilarmanner.
The infinite series (Eq. (7.27)) assumed for the deflected shape of a plate gives an exact solution
fordisplacementsandstresses.However,amorerapid,butapproximate,solutionmaybeobtainedby
assumingadisplacementfunctionintheformofapolynomial.Thepolynomialmust,ofcourse,satisfy
thegoverningdifferentialequation(Eq.(7.20))andtheboundaryconditionsofthespecificproblem.
The “guessed” form of the deflected shape of a plate is the basis for the energy method of solution
describedinSection7.6.


Example 7.2
Showthatthedeflectionfunction


w=A(x^2 y^2 −bx^2 y−axy^2 +abxy)

isvalidforarectangularplateofsidesaandb,builtinonallfouredgesandsubjectedtoauniformly
distributedloadofintensityq.IfthematerialoftheplatehasaYoung’smodulusEandisofthickness
t,determinethedistributionsofbendingmomentalongtheedgesoftheplate.

Free download pdf