7.6 Energy Method for the Bending of Thin Plates 245andsince∂w/∂xissmall,then
δa≈δx[
1 +
1
2
(
∂w
∂x) 2 ]
Hence,
a=∫a′0[
1 +
1
2
(
∂w
∂x) 2 ]
dxgiving
a=a′+∫a′01
2
(
∂w
∂x) 2
dxand
λ=a−a′=∫a′01
2
(
∂w
∂x) 2
dxSince
∫a′01
2
(
∂w
∂x) 2
dx onlydiffersfrom∫a01
2
(
∂w
∂x) 2
dxbyatermofnegligibleorder,wewrite
λ=∫a01
2
(
∂w
∂x) 2
dx (7.41)ThepotentialenergyVxoftheNxloadingfollowsfromEqs.(7.40)and(7.41);thus,
Vx=−1
2
∫a0∫b0Nx(
∂w
∂x) 2
dxdy (7.42)Similarly,
Vy=−1
2
∫a0∫b0Ny(
∂w
∂y) 2
dxdy (7.43)Thepotentialenergyofthein-planeshearloadNxymaybefoundbyconsideringtheworkdoneby
Nxyduringthesheardistortioncorrespondingtothedeflectionwofanelement.Thisshearstrainisthe