7.6 Energy Method for the Bending of Thin Plates 249
Example 7.4
Arectangularplatea×b,issimplysupportedalongeachedgeandcarriesauniformlydistributedload
ofintensityq 0 .Assumingadeflectedshapegivenby
w=A 11 sin
πx
a
sin
πy
b
determinethevalueofthecoefficientA 11 and,hence,findthemaximumvalueofdeflection.
The expression satisfies the boundary conditions of zero deflection and zero curvature (i.e., zero
bendingmoment)alongeachedgeoftheplate.SubstitutingforwinEq.(7.46),wehave
U+V=
∫a
0
∫b
0
[
DA^211
2
{
π^4
(a^2 b^2 )^2
(a^2 +b^2 )^2 sin^2
πx
a
sin^2
πy
b
− 2 ( 1 −ν)
×
[
π^4
a^2 b^2
sin^2
πx
a
sin^2
πy
b
−
π^4
a^2 b^2
cos^2
πx
a
cos^2
πy
b
]}
−q 0 A 11 sin
πx
a
sin
πy
b
]
dxdy
fromwhich
U+V=
DA^211
2
π^4
4 a^3 b^3
(a^2 +b^2 )^2 −q 0 A 11
4 ab
π^2
sothat
∂(U+V)
∂A 11
=
DA 11 π^4
4 a^3 b^3
(a^2 +b^2 )^2 −q 0
4 ab
π^2
= 0
and
A 11 =
16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2
giving
w=
16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2
sin
πx
a
sin
πy
b
Atthecenteroftheplate,wisamaximumand
wmax=
16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2
Forasquareplateandassumingν=0.3,
wmax=0.0455q 0
a^4
Et^3
whichcomparesfavorablywiththeresultofExample7.1.