7.6 Energy Method for the Bending of Thin Plates 249Example 7.4
Arectangularplatea×b,issimplysupportedalongeachedgeandcarriesauniformlydistributedload
ofintensityq 0 .Assumingadeflectedshapegivenby
w=A 11 sinπx
asinπy
bdeterminethevalueofthecoefficientA 11 and,hence,findthemaximumvalueofdeflection.
The expression satisfies the boundary conditions of zero deflection and zero curvature (i.e., zero
bendingmoment)alongeachedgeoftheplate.SubstitutingforwinEq.(7.46),wehave
U+V=
∫a0∫b0[
DA^211
2
{
π^4
(a^2 b^2 )^2(a^2 +b^2 )^2 sin^2πx
asin^2πy
b− 2 ( 1 −ν)×
[
π^4
a^2 b^2sin^2πx
asin^2πy
b−
π^4
a^2 b^2cos^2πx
acos^2πy
b]}
−q 0 A 11 sinπx
asinπy
b]
dxdyfromwhich
U+V=
DA^211
2
π^4
4 a^3 b^3(a^2 +b^2 )^2 −q 0 A 114 ab
π^2sothat
∂(U+V)
∂A 11=
DA 11 π^4
4 a^3 b^3(a^2 +b^2 )^2 −q 04 ab
π^2= 0
and
A 11 =16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2giving
w=16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2sinπx
asinπy
bAtthecenteroftheplate,wisamaximumand
wmax=16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2Forasquareplateandassumingν=0.3,
wmax=0.0455q 0a^4
Et^3whichcomparesfavorablywiththeresultofExample7.1.