Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
7.6 Energy Method for the Bending of Thin Plates 249

Example 7.4
Arectangularplatea×b,issimplysupportedalongeachedgeandcarriesauniformlydistributedload
ofintensityq 0 .Assumingadeflectedshapegivenby


w=A 11 sin

πx
a

sin

πy
b

determinethevalueofthecoefficientA 11 and,hence,findthemaximumvalueofdeflection.


The expression satisfies the boundary conditions of zero deflection and zero curvature (i.e., zero
bendingmoment)alongeachedgeoftheplate.SubstitutingforwinEq.(7.46),wehave


U+V=

∫a

0

∫b

0

[

DA^211

2

{

π^4
(a^2 b^2 )^2

(a^2 +b^2 )^2 sin^2

πx
a

sin^2

πy
b

− 2 ( 1 −ν)

×

[

π^4
a^2 b^2

sin^2

πx
a

sin^2

πy
b


π^4
a^2 b^2

cos^2

πx
a

cos^2

πy
b

]}

−q 0 A 11 sin

πx
a

sin

πy
b

]

dxdy

fromwhich


U+V=

DA^211

2

π^4
4 a^3 b^3

(a^2 +b^2 )^2 −q 0 A 11

4 ab
π^2

sothat


∂(U+V)
∂A 11

=

DA 11 π^4
4 a^3 b^3

(a^2 +b^2 )^2 −q 0

4 ab
π^2

= 0

and


A 11 =

16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2

giving


w=

16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2

sin

πx
a

sin

πy
b

Atthecenteroftheplate,wisamaximumand


wmax=

16 q 0 a^4 b^4
π^6 D(a^2 +b^2 )^2

Forasquareplateandassumingν=0.3,


wmax=0.0455q 0

a^4
Et^3

whichcomparesfavorablywiththeresultofExample7.1.

Free download pdf