Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

248 CHAPTER 7 Bending of Thin Plates


Thetermmultipliedby2( 1 −ν)integratestozero,andthemeanvalueofsin^2 orcos^2 overacomplete
numberofhalfwavesis^12 ;thus,integrationoftheprecedingexpressionyields


U+V=

D

2

∑∞

m=1,3,5

∑∞

n=1,3,5

A^2 mn

π^4 ab
4

(

m^2
a^2

+

n^2
b^2

) 2

(7.47)

−q 0

∑∞

m=1,3,5

∑∞

n=1,3,5

Amn

4 ab
π^2 mn

Fromtheprincipleofthestationaryvalueofthetotalpotentialenergy,wehave


∂(U+V)

∂Amn

=

D

2

2 Amn

π^4 ab
4

(

m^2
a^2

+

n^2
b^2

) 2

−q 0

4 ab
π^2 mn

= 0

sothat


Amn=

16 q 0
π^6 Dmn[(m^2 /a^2 )+(n^2 /b^2 )]^2

givingadeflectedform


w=

16 q 0
π^6 D

∑∞

m=1,3,5

∑∞

n=1,3,5

sin(mπx/a)sin(nπy/b)
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2

whichistheresultobtainedinEq.(i)ofExample7.1.
Theprecedingsolutionisexactsinceweknowthetruedeflectedshapeoftheplateintheformofan
infiniteseriesforw.Frequently,theappropriateinfiniteseriesisnotknownsothatonlyanapproximate
solutionmaybeobtained.Themethodofsolution,knownastheRayleigh–Ritzmethod,involvesthe
selectionofaseriesforwcontainingafinitenumberoffunctionsofxandy.Thesefunctionsarechosen
tosatisfytheboundaryconditionsoftheproblemasfaraspossibleandalsotogivethetypeofdeflection
patternexpected.Naturally,themorerepresentativethe“guessed”functionsare,themoreaccuratethe
solutionbecomes.
Supposethatthe“guessed”seriesforwinaparticularproblemcontainsthreedifferentfunctionsof
xandy.Thus,


w=A 1 f 1 (x,y)+A 2 f 2 (x,y)+A 3 f 3 (x,y),

whereA 1 ,A 2 ,andA 3 areunknowncoefficients.Wenowsubstituteforwintheappropriateexpression
forthetotalpotentialenergyofthesystemandassignstationaryvalueswithrespecttoA 1 ,A 2 ,andA 3
inturn.Thus,


∂(U+V)
∂A 1

= 0

∂(U+V)

∂A 2

= 0

∂(U+V)

∂A 3

= 0

givingthreeequations,whicharesolvedforA 1 ,A 2 ,andA 3.

Free download pdf