248 CHAPTER 7 Bending of Thin Plates
Thetermmultipliedby2( 1 −ν)integratestozero,andthemeanvalueofsin^2 orcos^2 overacomplete
numberofhalfwavesis^12 ;thus,integrationoftheprecedingexpressionyields
U+V=
D
2
∑∞
m=1,3,5
∑∞
n=1,3,5
A^2 mn
π^4 ab
4
(
m^2
a^2
+
n^2
b^2
) 2
(7.47)
−q 0
∑∞
m=1,3,5
∑∞
n=1,3,5
Amn
4 ab
π^2 mn
Fromtheprincipleofthestationaryvalueofthetotalpotentialenergy,wehave
∂(U+V)
∂Amn
=
D
2
2 Amn
π^4 ab
4
(
m^2
a^2
+
n^2
b^2
) 2
−q 0
4 ab
π^2 mn
= 0
sothat
Amn=
16 q 0
π^6 Dmn[(m^2 /a^2 )+(n^2 /b^2 )]^2
givingadeflectedform
w=
16 q 0
π^6 D
∑∞
m=1,3,5
∑∞
n=1,3,5
sin(mπx/a)sin(nπy/b)
mn[(m^2 /a^2 )+(n^2 /b^2 )]^2
whichistheresultobtainedinEq.(i)ofExample7.1.
Theprecedingsolutionisexactsinceweknowthetruedeflectedshapeoftheplateintheformofan
infiniteseriesforw.Frequently,theappropriateinfiniteseriesisnotknownsothatonlyanapproximate
solutionmaybeobtained.Themethodofsolution,knownastheRayleigh–Ritzmethod,involvesthe
selectionofaseriesforwcontainingafinitenumberoffunctionsofxandy.Thesefunctionsarechosen
tosatisfytheboundaryconditionsoftheproblemasfaraspossibleandalsotogivethetypeofdeflection
patternexpected.Naturally,themorerepresentativethe“guessed”functionsare,themoreaccuratethe
solutionbecomes.
Supposethatthe“guessed”seriesforwinaparticularproblemcontainsthreedifferentfunctionsof
xandy.Thus,
w=A 1 f 1 (x,y)+A 2 f 2 (x,y)+A 3 f 3 (x,y),
whereA 1 ,A 2 ,andA 3 areunknowncoefficients.Wenowsubstituteforwintheappropriateexpression
forthetotalpotentialenergyofthesystemandassignstationaryvalueswithrespecttoA 1 ,A 2 ,andA 3
inturn.Thus,
∂(U+V)
∂A 1
= 0
∂(U+V)
∂A 2
= 0
∂(U+V)
∂A 3
= 0
givingthreeequations,whicharesolvedforA 1 ,A 2 ,andA 3.