8.2 Inelastic Buckling 261Also,Pisappliedthroughthecentroidofeachendsectionadistanceefromnnsothat
∫d^10σx(y 1 +e)dA+∫d^20σv(y 2 −e)dA=−Pv (8.10)FromFig.8.8(b),
σx=σ 1
d 1y 1 σv=σ 2
d 2y 2 (8.11)Theanglebetweentwoclose,initiallyparallel,sectionsofthecolumnisequaltothechangeinslope
d^2 v/dz^2 ofthecolumnbetweenthetwosections.This,inturn,mustbeequaltotheangleδφinthestrain
diagramofFig.8.8(c).Hence,
d^2 v
dz^2=
σ 1
Ed 1=
σ 2
Etd 2(8.12)
andEq.(8.9)becomes,fromEqs.(8.11)and(8.12)
E
d^2 v
dz^2∫d^10y 1 dA−Etd^2 v
dz^2∫d^20y 2 dA= 0 (8.13)Further,inasimilarmanner,fromEq.(8.10)
d^2 v
dz^2⎛
⎝E
∫d^10y^21 dA+Et∫d^20y^22 dA⎞
⎠+ed(^2) v
dz^2
⎛
⎝E
∫d^10y 1 dA−Et∫d^20y 2 dA⎞
⎠=−Pv (8.14)Thesecondtermontheleft-handsideofEq.(8.14)iszerofromEq.(8.13).Therefore,wehave
d^2 v
dz^2(EI 1 +EtI 2 )=−Pv (8.15)inwhich
I 1 =
∫d^10y^21 dA and I 2 =∫d^20y^22 dAthe second moments of area aboutnnof the convex and concave sides of the column, respectively.
Putting
ErI=EI 1 +EtI 2or
Er=EI 1
I
+Et