262 CHAPTER 8 Columns
whereErisknownasthereducedmodulus,gives
ErId^2 v
dz^2+Pv= 0ComparingthiswithEq.(8.2),weseethatifPisthecriticalloadPCR,then
PCR=
π^2 ErI
le^2(8.17)
and
σCR=π^2 Er
(le/r)^2(8.18)
Theprecedingmethodforpredictingcriticalloadsandstressesoutsidetheelasticrangeisknownasthe
reducedmodulustheory.FromEq.(8.13),wehave
E
∫d^10y 1 dA−Et∫d^20y 2 dA= 0 (8.19)which,togetherwiththerelationshipd=d 1 +d 2 ,enablesthepositionofnntobefound.
ItispossiblethattheaxialloadPisincreasedatthetimeofthelateraldisturbanceofthecolumn
suchthatthereisnostrainreversalonitsconvexside.Therefore,thecompressivestressincreasesover
thecompletesectionsothatthetangentmodulusappliesoverthewholecrosssection.Theanalysisis
thenthesameasthatforcolumnbucklingwithintheelasticlimitexceptthatEtissubstitutedforE.
Hence,thetangentmodulustheorygives
PCR=
π^2 EtI
le^2(8.20)
and
σCR=π^2 Et
(le/r^2 )(8.21)
By a similar argument, a reduction inPcould result in a decrease in stress over the whole cross
section.Theelasticmodulusappliesinthiscase,andthecriticalloadandstressaregivenbythestandard
Eulertheory,namely,Eqs.(8.7)and(8.8).
In Eq. (8.16),I 1 andI 2 are together greater thanI, whileEis greater thanEt. It follows that the
reducedmodulusErisgreaterthanthetangentmodulusEt.Consequently,bucklingloadspredictedby
thereducedmodulustheoryaregreaterthanbucklingloadsderivedfromthetangentmodulustheory,so
thatalthoughwehavespecifiedtheoreticalloadingsituationswherethedifferenttheorieswouldapply,
therestillremainsthedifficultyofdecidingwhichshouldbeusedfordesignpurposes.