270 CHAPTER 8 Columns
The deflection curve is then obtained from Eq. (8.38) by substitutingλafor sinλa(sinceλais now
verysmall)andMBforWa.Thus,
v=MB
P
(
sinλz
sinλl−
z
l)
(8.40)
Inasimilarway,wefindthedeflectioncurvecorrespondingtoMAactingalone.SupposethatWmoves
toward A such that the productW(l−a)=constant=MA. Then, as (l−a)tends to zero, we have
sinλ(l−a)=λ(l−a),andEq.(8.39)becomes
v=MA
P
[
sinλ(l−z)
sinλl−
(l−z)
l]
(8.41)
The effect of the two moments acting simultaneously is obtained by superposition of the results of
Eqs.(8.40)and(8.41).Hence,forthebeam-columnofFig.8.13,
v=MB
P
(
sinλz
sinλl−
z
l)
+
MA
P
[
sinλ(l−z)
sinλl−
(l−z)
l]
(8.42)
Equation(8.42)isalsothedeflectedformofabeam-columnsupportingeccentricallyappliedendloads
atAandB.Forexample,ifeAandeBaretheeccentricitiesofPattheendsAandB,respectively,then
MA=PeA,MB=PeB,givingadeflectedformof
v=eB(
sinλz
sinλl−
z
l)
+eA[
sinλ(l−z)
sinλl−
(l−z)
l]
(8.43)
Otherbeam-columnconfigurationsfeaturingavarietyofendconditionsandloadingregimesmay
beanalyzedbyasimilarprocedure.
8.5 EnergyMethodfortheCalculationofBucklingLoadsinColumns...........................
Thefactthatthetotalpotentialenergyofanelasticbodypossessesastationaryvalueinanequilibrium
statemaybeusedtoinvestigatetheneutralequilibriumofabuckledcolumn.Inparticular,theenergy
methodisextremelyusefulwhenthedeflectedformofthebuckledcolumnisunknownandhastobe
“guessed”.
First,weshallconsiderthepin-endedcolumnshowninitsbuckledpositioninFig.8.14.Theinternal
orstrainenergyUofthecolumnisassumedtobeproducedbybendingactionaloneandisgivenby
thewell-knownexpression
U=
∫l0M^2
2 EI
dz (8.44)