8.4 Stability of Beams under Transverse and Axial Loads 269
Similarly,thegeneralsolutionofEq.(8.35)is
v=Ccosλz+Dsinλz−
W
Pl
(l−a)(l−z) (8.37)
whereA,B,C,andDareconstantswhicharefoundfromtheboundaryconditionsasfollows.
Whenz=0,v=0,sofromEq.(8.36)A=0.At z=l,v=0giving,fromEq.(8.37),C=−Dtanλl.
Atthepointofapplicationoftheload,thedeflectionandslopeofthebeamgivenbyEqs.(8.36)and
(8.37)mustbethesame.Hence,equatingdeflections
Bsinλ(l−a)−
Wa
Pl
(l−a)=D[sinλ(l−a)−tanλlcosλ(l−a)]−
Wa
Pl
(l−a)
andequatingslopes
Bλcosλ(l−a)−
Wa
Pl
=Dλ[cosλ(l−a)−tanλlsinλ(l−a)]+
W
Pl
(l−a)
Solving the preceding equations forBandDand substituting forA,B,C,andDin Eqs. (8.36) and
(8.37),wehave
v=
Wsinλa
Pλsinλl
sinλz−
Wa
Pl
z forz≤l−a (8.38)
v=
Wsinλ(l−a)
Pλsinλl
sinλ(l−z)−
W
Pl
(l−a)(l−z) forz≥l−a (8.39)
These equations for the beam-column deflection enable the bending moment and resulting bending
stressestobefoundatallsections.
Aparticularcaseariseswhentheloadisappliedatthecenterofthespan.Thedeflectioncurveis
thensymmetricalwithamaximumdeflectionundertheloadof
vmax=
W
2 Pλ
tan
λl
2
−
Wl
4 p
Finally,weconsiderabeam-columnsubjectedtoendmomentsMAandMBinadditiontoanaxial
loadP(Fig. 8.13). The deflected form of the beam-column may be found by using the principle of
superpositionandtheresultsofthepreviouscase.First,weimaginethatMBactsalonewiththeaxial
loadP.IfweassumethatthepointloadWmovestowardBandsimultaneouslyincreasessothatthe
productWa=constant=MB,then,inthelimitasatendstozero,wehavethemomentMBappliedatB.
Fig.8.13
Beam-column supporting end moments.