8.6 Flexural–Torsional Buckling of Thin-Walled Columns 277pointBwillbedisplacedtoB′′.ThehorizontalmovementofBinthexdirectionisthen
uB=u+B′F=u+B′B′′cosβBut
B′B′′=S′B′θ=SBθHence
uB=u+θSBcosβor
uB=u+(yS−yB)θ (8.63)Similarly,themovementofBintheydirectionis
vB=v−(xS−xB)θ (8.64)Therefore,fromEqs.(8.63)and(8.64)andreferringtoEqs.(8.55)and(8.56),weseethatthecompressive
loadontheelementδsatB,σtδs,isequivalenttolateralloads
−σtδsd^2
dz^2[u+(yS−yB)θ]inthexdirectionand
−σtδsd^2
dz^2[v−(xS−xB)θ]intheydirectionThelinesofactionoftheseequivalentlateralloadsdonotpassthroughthedisplacedpositionS′ofthe
shearcenterand,therefore,produceatorqueaboutS′leadingtotherotationθ.Supposethattheelement
δsatBisofunitlengthinthelongitudinalzdirection.ThetorqueperunitlengthofthecolumnδT(z)
actingontheelementatBisthengivenby
δT(z)=−σtδsd^2
dz^2[u+(yS−yB)θ](yS−yB)+σtδsd^2
dz^2[v−(xS−xB)θ](xS−xB) (8.65)IntegratingEq.(8.65)overthecompletecrosssectionofthecolumngivesthetorqueperunitlength
actingonthecolumn;thatis,
T(z)=−∫
Sectσtd^2 u
dz^2(yS−yB)ds−∫
Sectσt(yS−yB)^2d^2 θ
dz^2ds+
∫
Sectσtd^2 v
dz^2(xS−xB)ds−∫
Sectσt(xS−xB)^2d^2 θ
dz^2ds (8.66)