8.6 Flexural–Torsional Buckling of Thin-Walled Columns 277
pointBwillbedisplacedtoB′′.ThehorizontalmovementofBinthexdirectionisthen
uB=u+B′F=u+B′B′′cosβ
But
B′B′′=S′B′θ=SBθ
Hence
uB=u+θSBcosβ
or
uB=u+(yS−yB)θ (8.63)
Similarly,themovementofBintheydirectionis
vB=v−(xS−xB)θ (8.64)
Therefore,fromEqs.(8.63)and(8.64)andreferringtoEqs.(8.55)and(8.56),weseethatthecompressive
loadontheelementδsatB,σtδs,isequivalenttolateralloads
−σtδs
d^2
dz^2
[u+(yS−yB)θ]inthexdirection
and
−σtδs
d^2
dz^2
[v−(xS−xB)θ]intheydirection
ThelinesofactionoftheseequivalentlateralloadsdonotpassthroughthedisplacedpositionS′ofthe
shearcenterand,therefore,produceatorqueaboutS′leadingtotherotationθ.Supposethattheelement
δsatBisofunitlengthinthelongitudinalzdirection.ThetorqueperunitlengthofthecolumnδT(z)
actingontheelementatBisthengivenby
δT(z)=−σtδs
d^2
dz^2
[u+(yS−yB)θ](yS−yB)
+σtδs
d^2
dz^2
[v−(xS−xB)θ](xS−xB) (8.65)
IntegratingEq.(8.65)overthecompletecrosssectionofthecolumngivesthetorqueperunitlength
actingonthecolumn;thatis,
T(z)=−
∫
Sect
σt
d^2 u
dz^2
(yS−yB)ds−
∫
Sect
σt(yS−yB)^2
d^2 θ
dz^2
ds
+
∫
Sect
σt
d^2 v
dz^2
(xS−xB)ds−
∫
Sect
σt(xS−xB)^2
d^2 θ
dz^2
ds (8.66)