278 CHAPTER 8 Columns
ExpandingEq.(8.66)andnotingthatσisconstantoverthecrosssection,weobtain
T(z)=−σd^2 u
dz^2yS∫
Secttds+σd^2 u
dz^2∫
SecttyBds−σd^2 θ
dz^2y^2 S∫
Secttds+σd^2 θ
dz^22 yS∫
SecttyBds−σd^2 θ
dz^2∫
Sectty^2 Bds+σd^2 v
dz^2xS∫
Secttds−σd^2 v
dz^2∫
SecttxBds−σd^2 θ
dz^2x^2 S∫
Secttds+σd^2 θ
dz^22 xS∫
SecttxBds−σd^2 θ
dz^2∫
Secttx^2 Bds(8.67)
Equation(8.67)mayberewritten
T(z)=P(
xSd^2 v
dz^2−ySd^2 u
dz^2)
−
P
A
d^2 θ
dz^2(Ay^2 S+Ixx+AxS^2 +Iyy) (8.68)InEq.(8.68),thetermIxx+Iyy+A(x^2 S+y^2 S)isthepolarsecondmomentofareaI 0 ofthecolumnabout
theshearcenterS.Thus,Eq.(8.68)becomes
T(z)=P(
xSd^2 v
dz^2−ySd^2 u
dz^2)
−I 0
P
A
d^2 θ
dz^2(8.69)
SubstitutingforT(z)fromEq(8.69)inthegeneralequationforthetorsionofathin-walledbeam(see
Ref.3)wehave
E
d^4 θ
dz^4−
(
GJ−I 0
P
A
)
d^2 θ
dz^2−PxSd^2 v
dz^2+PySd^2 u
dz^2= 0 (8.70)
Equations(8.61),(8.62),and(8.70)formthreesimultaneousequationswhichmaybesolvedtodetermine
theflexural–torsionalbucklingloads.
Asanexample,considerthecaseofacolumnoflengthLinwhichtheendsarerestrainedagainst
rotationaboutthezaxisandagainstdeflectioninthexandydirections;theendsarealsofreetorotate
aboutthexandyaxesandarefreetowarp.Thus,u=v=θ=0atz=0andz=L.Also,sincethecolumn
isfreetorotateaboutthexandyaxesatitsends,Mx=My=0atz=0andz=L,andfromEqs.(8.61)
and(8.62)
d^2 v
dz^2=
d^2 u
dz^2=0atz=0andz=LFurther,theendsofthecolumnarefreetowarpsothat
d^2 θ
dz^2=0atz=0andz=L