278 CHAPTER 8 Columns
ExpandingEq.(8.66)andnotingthatσisconstantoverthecrosssection,weobtain
T(z)=−σ
d^2 u
dz^2
yS
∫
Sect
tds+σ
d^2 u
dz^2
∫
Sect
tyBds−σ
d^2 θ
dz^2
y^2 S
∫
Sect
tds
+σ
d^2 θ
dz^2
2 yS
∫
Sect
tyBds−σ
d^2 θ
dz^2
∫
Sect
ty^2 Bds+σ
d^2 v
dz^2
xS
∫
Sect
tds
−σ
d^2 v
dz^2
∫
Sect
txBds−σ
d^2 θ
dz^2
x^2 S
∫
Sect
tds+σ
d^2 θ
dz^2
2 xS
∫
Sect
txBds
−σ
d^2 θ
dz^2
∫
Sect
tx^2 Bds
(8.67)
Equation(8.67)mayberewritten
T(z)=P
(
xS
d^2 v
dz^2
−yS
d^2 u
dz^2
)
−
P
A
d^2 θ
dz^2
(Ay^2 S+Ixx+AxS^2 +Iyy) (8.68)
InEq.(8.68),thetermIxx+Iyy+A(x^2 S+y^2 S)isthepolarsecondmomentofareaI 0 ofthecolumnabout
theshearcenterS.Thus,Eq.(8.68)becomes
T(z)=P
(
xS
d^2 v
dz^2
−yS
d^2 u
dz^2
)
−I 0
P
A
d^2 θ
dz^2
(8.69)
SubstitutingforT(z)fromEq(8.69)inthegeneralequationforthetorsionofathin-walledbeam(see
Ref.3)wehave
E
d^4 θ
dz^4
−
(
GJ−I 0
P
A
)
d^2 θ
dz^2
−PxS
d^2 v
dz^2
+PyS
d^2 u
dz^2
= 0 (8.70)
Equations(8.61),(8.62),and(8.70)formthreesimultaneousequationswhichmaybesolvedtodetermine
theflexural–torsionalbucklingloads.
Asanexample,considerthecaseofacolumnoflengthLinwhichtheendsarerestrainedagainst
rotationaboutthezaxisandagainstdeflectioninthexandydirections;theendsarealsofreetorotate
aboutthexandyaxesandarefreetowarp.Thus,u=v=θ=0atz=0andz=L.Also,sincethecolumn
isfreetorotateaboutthexandyaxesatitsends,Mx=My=0atz=0andz=L,andfromEqs.(8.61)
and(8.62)
d^2 v
dz^2
=
d^2 u
dz^2
=0atz=0andz=L
Further,theendsofthecolumnarefreetowarpsothat
d^2 θ
dz^2
=0atz=0andz=L