8.6 Flexural–Torsional Buckling of Thin-Walled Columns 279Anassumedbuckledshapegivenby
u=A 1 sinπz
Lv=A 2 sinπz
Lθ=A 3 sinπz
L(8.71)
inwhichA 1 ,A 2 ,andA 3 areunknownconstants,satisfiestheprecedingboundaryconditions.Substituting
foru,v,andθfromEqs.(8.71)intoEqs.(8.61),(8.62),and(8.70),wehave
(
P−π^2 EIxx
L^2)
A 2 −PxSA 3 = 0
(
P−π^2 EIyy
L^2)
A 1 +PySA 3 = 0PySA 1 −PxSA 2 −(
π^2 E
L^2+GJ−
I 0
A
P
)
A 3 = 0
⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎭
(8.72)
FornonzerovaluesofA 1 ,A 2 ,andA 3 ,thedeterminantofEqs.(8.72)mustequalzero;thatis,
∣ ∣ ∣ ∣ ∣ ∣
0 P−π^2 EIxx/L^2 −PxS
P−π^2 EIyy/L^20 PyS
PyS −PxS I 0 P/A−π^2 E/L^2 −GJ
∣ ∣ ∣ ∣ ∣ ∣
= 0 (8.73)
Therootsofthecubicequationformedbytheexpansionofthedeterminantgivethecriticalloadsfor
theflexural–torsionalbucklingofthecolumn;clearlythelowestvalueissignificant.
In the case where the shear center of the column and the centroid of area coincide—that is, the
columnhasadoublysymmetricalcrosssection—xS=yS=0,andEqs.(8.61),(8.62),and(8.70)reduce,
respectively,to
EIxxd^2 v
dz^2=−Pv (8.74)EIyyd^2 u
dz^2=−Pu (8.75)E
d^4 θ
dz^4(
GJ−I 0
P
A
)
d^2 θ
dz^2= 0 (8.76)
Equations(8.74),(8.75),and(8.76),unlikeEqs.(8.61),(8.62),and(8.70),areuncoupledandprovide
threeseparatevaluesofbucklingload.Thus,Eqs.(8.74)and(8.75)givevaluesfortheEulerbuckling
loadsaboutthexandyaxes,respectively,whereasEq.(8.76)givestheaxialloadwhichwouldproduce
puretorsionalbuckling;clearlythebucklingloadofthecolumnisthelowestofthesevalues.Forthe
columnwhosebuckledshapeisdefinedbyEqs.(8.71),substitutionforv,u,andθinEqs.(8.74),(8.75),
and(8.76),respectively,gives
PCR(xx)=π^2 EIxx
L 2PCR(yy)=π^2 EIyy
L^2PCR(θ)=A
I 0
(
GJ+
π^2 E
L^2