286 CHAPTER 8 Columns
Sinceθ=0atz=l,
cosμL= 1or
μL= 2 nπTherefore,
μ^2 L^2 = 4 n^2 π^2or
σI 0 −GJ
E=
4 n^2 π^2
L^2Thelowestvalueoftorsionalbucklingloadcorrespondston=1sothat,rearrangingthepreceding,
σ=1
I 0
(
GJ+
4 π^2 E
L^2)
(viii)ThepolarsecondmomentofareaI 0 isgivenby
I 0 =Ixx+Iyy (seeRef.2)thatis,
I 0 = 2
(
tdd^2 +td
33)
+
3 td^3
12+ 2 tdd^2
4whichgives
I 0 =
4 ltd^3
12SubstitutingforI 0 ,J,andinEq.(viii)
σ=4
4 ld^3(
sgt^2 +13 π^2 Ed^4
L^2)
References
[1] Timoshenko,S.P.,andGere,J.M.,TheoryofElasticStability,2ndedition,McGraw-Hill,1961.
[2] Megson,T.H.G.,StructuralandStressAnalysis,2ndedition,Elsevier,2005.
[3] Megson,T.H.G.,AircraftStructuresforEngineeringStudents,4thedition,Elsevier,2007.