294 CHAPTER 9 Thin Plates
Fig.9.1
Buckling of a thin flat plate.
andthatthesearesmallcomparedwiththethicknessoftheplate.Theserestrictionsthereforeapplyin
thesubsequenttheory.
First, we consider the relatively simple case of the thin plate of Fig. 9.1, loaded as shown, but
simplysupportedalongallfouredges.WehaveseeninChapter7thatitstruedeflectedshapemaybe
representedbytheinfinitedoubletrigonometricalseries
w=∑∞
m= 1∑∞
n= 1Amnsinmπx
asinnπy
bAlso,thetotalpotentialenergyoftheplateis,fromEqs.(7.37)and(7.45),
U+V=
1
2
∫a0∫b0[
D
{(
∂^2 w
∂x^2+
∂^2 w
∂y^2) 2
− 2 ( 1 −ν)[
∂^2 w
∂x^2∂^2 w
∂y^2−
(
∂^2 w
∂x∂y) 2 ]}
−Nx(
∂w
∂x) 2 ]
dxdy(9.1)
TheintegrationofEq.(9.1)onsubstitutingforwissimilartothoseintegrationscarriedoutinChapter7.
Thus,bycomparingwithEq.(7.47),
U+V=
π^4 abD
8∑∞
m= 1∑∞
n= 1A^2 mn(
m^2
a^2+
n^2
b^2)
−
π^2 b
8 aNx∑∞
m= 1∑∞
n= 1m^2 A^2 mn (9.2)Thetotalpotentialenergyoftheplatehasastationaryvalueintheneutralequilibriumofitsbuckled
state(i.e.,Nx=Nx,CR).Therefore,differentiatingEq.(9.2)withrespecttoeachunknowncoefficient
Amn,wehave
∂(U+V)
∂Amn=
π^4 abD
4Amn(
m^2
a^2+
n^2
b^2) 2
−
π^2 b
4 aNx,CRm^2 Amn= 0