15.3 Deflections due to Bending 447
Sincev=0whenz=0(orsincev=0whenz=L),itfollowsthatC 2 =0andthedeflectedshapeofthe
beamhastheequation
v=
w
24 EI
( 2 Lz^3 −z^4 −L^3 z) (iv)
Themaximumdeflectionoccursatmidspanwherez=L/2andis
vmidspan=−
5 wL^4
384 EI
(v)
Sofar,theconstantsofintegrationweredeterminedimmediatelyaftertheyarose.However,insome
cases,arelevantboundarycondition,say,avalueofgradient,isnotobtainable.Themethodisthento
carrytheunknownconstantthroughthesucceedingintegrationanduseknownvaluesofdeflectionat
twosectionsofthebeam.Thus,inthepreviousexample,Eq.(ii)isintegratedtwicetoobtain
EIv=
w
2
(
Lz^3
6
−
z^4
12
)
+C 1 z+C 2
Therelevantboundaryconditionsarev=0atz=0andz=L.ThefirstofthesegivesC 2 =0,whereas
fromthesecond,wehaveC 1 =−wL^3 /24.Thus,theequationofthedeflectedshapeofthebeamis
v=
w
24 EI
( 2 Lz^3 −z^4 −L^3 z)
asbefore.
Example 15.8
Figure 15.19(a) shows a simply supported beam carrying a concentrated loadWat midspan. Deter-
mine the deflection curve of the beam and the maximum deflection if the beam section is doubly
symmetrical.
ThesupportreactionsareeachW/2andthebendingmomentMatasectionZadistancez(≤L/2)
fromtheleft-handsupportis
M=−
W
2
z (i)
FromthesecondofEq.(15.32),wehave
EIv′′=
W
2
z (ii)
Integrating,weobtain
EIv′=
W
2
z^2
2
+C 1
Fromsymmetry,theslopeofthebeamiszeroatmidspanwherez=L/2.Thus,C 1 =−WL^2 /16and
EIv′=
W
16
( 4 z^2 −L^2 ) (iii)