450 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
and
EIv=
1
8
Wz^3 −
W
6
[z−a]^3 −
W
6
[z− 2 a]^3 +
W
3
[z− 3 a]^3 +C 1 z+C 2 (iv)
inwhichC 1 andC 2 arearbitraryconstants.Whenz=0(atA),v=0,andhenceC 2 =0.Notethatthe
second, third, and fourth terms on the right-hand side of Eq. (iv) disappear forz<a.Also,v=0at
z= 4 a(F)sothat,fromEq.(iv),wehave
0 =
W
8
64 a^3 −
W
6
27 a^3 −
W
6
8 a^3 +
W
3
a^3 + 4 aC 1
whichgives
C 1 =−
5
8
Wa^2
Equations(iii)and(iv)nowbecome
EIv′=
3
8
Wz^2 −
W
2
[z−a]^2 −
W
2
[z− 2 a]^2 +W[z− 3 a]^2 −
5
8
Wa^2 (v)
and
EIv=
1
8
Wz^3 −
W
6
[z−a]^3 −
W
6
[z− 2 a]^3 +
W
3
[z− 3 a]^3 −
5
8
Wa^2 z, (vi)
respectively.
To determine the maximum upward and downward deflections, we need to know in which bays
v′=0 and thereby which terms in Eq. (v) disappear when the exact positions are being located. One
methodistoselectabayanddeterminethesignoftheslopeofthebeamattheextremitiesofthebay.
Achangeofsignwillindicatethattheslopeiszerowithinthebay.
ByinspectionofFig.15.20,itseemslikelythatthemaximumdownwarddeflectionwilloccurin
BC.AtB,usingEq.(v)
EIv′=
3
8
Wa^2 −
5
8
Wa^2
whichisclearlynegative.AtC,
EIv′=
3
8
W 4 a^2 −
W
2
a^2 −
5
8
Wa^2
whichispositive.Therefore,themaximumdownwarddeflectiondoesoccurinBCanditsexactposition
islocatedbyequatingv′tozeroforanysectioninBC.Thus,fromEq.(v)
0 =
3
8
Wz^2 −
W
2
[z−a]^2 −
5
8
Wa^2
or,simplifying,
0 =z^2 − 8 az+ 9 a^2 (vii)