15.3 Deflections due to Bending 449
Fig.15.20
Macauley’s method for the deflection of a simply supported beam.
deflectionproblemsbyMacauley,in1919andhencethemethodisfrequentlyknownasMacauley’s
method.
Wenowintroduceaquantity[z−a]anddefineittobezeroif(z−a)<0;thatis,z<a,andtobe
simply (z−a)ifz>a. The quantity [z−a] is known as a singularity or half-range function and is
definedtohaveavalueonlywhentheargumentispositive,inwhichcasethesquarebracketsbehave
inanidenticalmannertoordinaryparentheses.
Example 15.9
Determinethepositionandmagnitudeofthemaximumupwardanddownwarddeflectionsofthebeam
showninFig.15.20.
Aconsiderationoftheoverallequilibriumofthebeamgivesthesupportreactions;thus,
RA=
3
4
W(upward) RF=
3
4
W(downward)
Using the method of singularity functions and taking the origin of axes at the left-hand support, we
writedownanexpressionforthebendingmoment,M,atanysectionZbetweenDandF,theregionof
thebeamfurthestfromtheorigin.Thus,
M=−RAz+W[z−a]+W[z− 2 a]− 2 W[z− 3 a](i)
SubstitutingforMinthesecondofEq.(15.32),wehave
EIv′′=
3
4
Wz−W[z−a]−W[z− 2 a]+ 2 W[z− 3 a](ii)
IntegratingEq.(ii)andretainingthesquarebrackets,weobtain
EIv′=
3
8
Wz^2 −
W
2
[z−a]^2 −
W
2
[z− 2 a]^2 +W[z− 3 a]^2 +C 1 (iii)