Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

456 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams


Atthefreeendofthecantilever(z=L),thehorizontalcomponentofdeflectionis


uf.e.=

WIxyL^3
3 E(IxxIyy−I^2 xy)

(vi)

Similarly,theverticalcomponentofthedeflectionatthefreeendofthecantileveris


vf.e.=

−WIyyL^3
3 E(IxxIyy−Ixy^2 )

(vii)

Theactualdeflectionδf.e.atthefreeendisthengivenby


δf.e.=(u^2 f.e.+v^2 f.e.)

(^12)
atanangleoftan−^1 uf.e./vf.e.tothevertical.
NotethatifeitherCxorCywereanaxisofsymmetry,Ixy=0andEqs.(vi)and(vii)reduceto
uf.e.= 0 vf.e.=


−WL^3

3 EIxx

thewell-knownresultsforthebendingofacantileverhavingasymmetricalcrosssectionandcarrying
aconcentratedverticalloadatitsfreeend(seeExample15.5).


15.4 CalculationofSectionProperties..................................................................


Itwillbehelpfulatthisstagetodiscussthecalculationofthevarioussectionpropertiesrequiredinthe
analysisofbeamssubjectedtobending.Initially,however,twousefultheoremsarequoted.


15.4.1 Parallel Axes Theorem


ConsiderthebeamsectionshowninFig.15.25andsupposethatthesecondmomentofarea,IC,about
anaxisthroughitscentroidCisknown.Thesecondmomentofarea,IN,aboutaparallelaxis,NN,a
distancebfromthecentroidalaxisisthengivenby


IN=IC+Ab^2 (15.33)

Fig.15.25


Parallel axes theorem.

Free download pdf