470 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
Thedirectstressonanelementδsinthewallofthesectionisthen,fromEq.(15.45),σ=EαT(x,y)tδsEquations(15.46)through(15.48)thenbecome
NT=
∫
AEαT(x,y)tds (15.52)MxT=∫
AEαT(x,y)tyds (15.53)MyT=∫
AEαT(x,y)txds (15.54)Example 15.16
If, in the beam section of Example 15.15, the temperature change in the upper flange is 2T 0 but in
the web varies linearly from 2T 0 at its junction with the upper flange to zero at its junction with the
lowerflangedeterminethevaluesofthestressresultants;thetemperaturechangeinthelowerflange
remainszero.
ThetemperaturechangeatanypointinthewebisgivenbyTw= 2 T 0 (a+y)/ 2 a=T 0
a(a+y)Then,fromEqs.(15.49)and(15.52),
NT=Eα 2 T 0 at+∫a−aEαT 0
a(a+y)tdsthatis, NT=EαT 0{
2 at+1
a[
ay+y^2
2]a−a}
whichgives
NT= 4 EαT 0 atNotethat,inthiscase,theanswerisidenticaltothatinExample15.15,whichistobeexpected,sincethe
averagetemperaturechangeinthewebis(2T 0 + 0 )/ 2 =T 0 ,whichisequaltotheconstanttemperature
changeinthewebinExample15.15.