Problems 471
FromEqs.(15.50)and(15.53),
MxT=Eα 2 T 0 at(a)+
∫a
−a
Eα
T 0
a
(a+y)ytds
thatis,
MxT=EαT 0
{
2 a^2 t+
1
a
[
ay^2
2
+
y^3
3
]a
−a
}
fromwhich
MxT=
8 Eαa^2 tT 0
3
Alternatively,theaveragetemperaturechangeT 0 inthewebmaybeconsideredtoactatthecentroidof
thetemperaturechangedistribution.Then,
MxT=Eα 2 T 0 at(a)+EαT 02 at
(a
3
)
thatis,
MxT=
8 Eαa^2 tT 0
3
asbefore
ThecontributionofthetemperaturechangeinthewebtoMyTremainszero,sincethesectioncentroid
isintheweb;thevalueofMyTistherefore−Eαa^2 tT 0 asinExample15.14.
Reference
[1] Megson,T.H.G.,StructuresandStressAnalysis,2ndedition,Elsevier,2005.
Problems..............................................................................................
P.15.1 FigureP.15.1showsthesectionofananglepurlin.Abendingmomentof3000Nmisappliedtothepurlin
inaplaneatanangleof30◦totheverticalyaxis.Ifthesenseofthebendingmomentissuchthatitscomponents
MxandMyboth produce tension in the positivexyquadrant, calculate the maximum direct stress in the purlin,
statingclearlythepointatwhichitacts.
Ans. σz,max=−63.3N/mm^2 atC.