Problems 471FromEqs.(15.50)and(15.53),MxT=Eα 2 T 0 at(a)+∫a−aEαT 0
a(a+y)ytdsthatis,
MxT=EαT 0{
2 a^2 t+1
a[
ay^2
2+
y^3
3]a−a}
fromwhich
MxT=8 Eαa^2 tT 0
3Alternatively,theaveragetemperaturechangeT 0 inthewebmaybeconsideredtoactatthecentroidof
thetemperaturechangedistribution.Then,
MxT=Eα 2 T 0 at(a)+EαT 02 at(a
3)
thatis,
MxT=8 Eαa^2 tT 0
3asbeforeThecontributionofthetemperaturechangeinthewebtoMyTremainszero,sincethesectioncentroid
isintheweb;thevalueofMyTistherefore−Eαa^2 tT 0 asinExample15.14.
Reference
[1] Megson,T.H.G.,StructuresandStressAnalysis,2ndedition,Elsevier,2005.
Problems..............................................................................................
P.15.1 FigureP.15.1showsthesectionofananglepurlin.Abendingmomentof3000Nmisappliedtothepurlin
inaplaneatanangleof30◦totheverticalyaxis.Ifthesenseofthebendingmomentissuchthatitscomponents
MxandMyboth produce tension in the positivexyquadrant, calculate the maximum direct stress in the purlin,
statingclearlythepointatwhichitacts.
Ans. σz,max=−63.3N/mm^2 atC.