484 CHAPTER 16 Shear of Beams
UsingtherelationshipsofEqs.(15.23)and(15.24)—thatis,∂My/∂z=Sx,andsoon—thisexpression
becomes
∂σz
∂z=
(SxIxx−SyIxy)
IxxIyy−Ixy^2x+(SyIyy−SxIxy)
IxxIyy−Ixy^2ySubstitutingfor∂σz/∂zinEq.(16.2)gives
∂q
∂s=−
(SxIxx−SyIxy)
IxxIyy−Ixy^2tx−(SyIyy−SxIxy)
IxxIyy−Ixy^2ty (16.12)IntegratingEq.(16.12)withrespecttosfromsomeoriginforstoanypointaroundthecrosssection,
weobtain
∫s0∂q
∂sds=−(
SxIxx−SyIxy
IxxIyy−Ixy^2)∫s0txds−(
SyIyy−SxIxy
IxxIyy−Ixy^2)∫s0tyds (16.13)Iftheoriginforsistakenattheopenedgeofthecrosssection,thenq=0whens=0,andEq.(16.13)
becomes
qs=−(
SxIxx−SyIxy
IxxIyy−Ixy^2)∫s0txds−(
SyIyy−SxIxy
IxxIyy−I^2 xy)∫s0tyds (16.14)ForasectionhavingeitherCxorCyasanaxisofsymmetryIxy=0andEq.(16.14)reducesto
qs=−Sx
Iyy∫s0txds−Sy
Ixx∫s0tydsExample 16.1
Determine the shear flow distribution in the thin-walled Z-section shown in Fig. 16.6 due to a shear
loadSyappliedthroughtheshearcenterofthesection.
Theoriginforoursystemofreferenceaxescoincideswiththecentroidofthesectionatthemidpoint
oftheweb.Fromantisymmetry,wealsodeducebyinspectionthattheshearcenteroccupiesthesame
position.SinceSyisappliedthroughtheshearcenter,notorsionexistsandtheshearflowdistribution
isgivenbyEq.(16.14)inwhichSx=0;thatis,
qs=SyIxy
IxxIyy−Ixy^2∫s0txds−SyIyy
IxxIyy−I^2 xy∫s0tydsor
qs=Sy
IxxIyy−Ixy^2⎛
⎝Ixy∫s0txds−Iyy∫s0tyds⎞
⎠ (i)