Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

484 CHAPTER 16 Shear of Beams


UsingtherelationshipsofEqs.(15.23)and(15.24)—thatis,∂My/∂z=Sx,andsoon—thisexpression
becomes


∂σz
∂z

=

(SxIxx−SyIxy)
IxxIyy−Ixy^2

x+

(SyIyy−SxIxy)
IxxIyy−Ixy^2

y

Substitutingfor∂σz/∂zinEq.(16.2)gives


∂q
∂s

=−

(SxIxx−SyIxy)
IxxIyy−Ixy^2

tx−

(SyIyy−SxIxy)
IxxIyy−Ixy^2

ty (16.12)

IntegratingEq.(16.12)withrespecttosfromsomeoriginforstoanypointaroundthecrosssection,
weobtain


∫s

0

∂q
∂s

ds=−

(

SxIxx−SyIxy
IxxIyy−Ixy^2

)∫s

0

txds−

(

SyIyy−SxIxy
IxxIyy−Ixy^2

)∫s

0

tyds (16.13)

Iftheoriginforsistakenattheopenedgeofthecrosssection,thenq=0whens=0,andEq.(16.13)
becomes


qs=−

(

SxIxx−SyIxy
IxxIyy−Ixy^2

)∫s

0

txds−

(

SyIyy−SxIxy
IxxIyy−I^2 xy

)∫s

0

tyds (16.14)

ForasectionhavingeitherCxorCyasanaxisofsymmetryIxy=0andEq.(16.14)reducesto


qs=−

Sx
Iyy

∫s

0

txds−

Sy
Ixx

∫s

0

tyds

Example 16.1
Determine the shear flow distribution in the thin-walled Z-section shown in Fig. 16.6 due to a shear
loadSyappliedthroughtheshearcenterofthesection.


Theoriginforoursystemofreferenceaxescoincideswiththecentroidofthesectionatthemidpoint
oftheweb.Fromantisymmetry,wealsodeducebyinspectionthattheshearcenteroccupiesthesame
position.SinceSyisappliedthroughtheshearcenter,notorsionexistsandtheshearflowdistribution
isgivenbyEq.(16.14)inwhichSx=0;thatis,


qs=

SyIxy
IxxIyy−Ixy^2

∫s

0

txds−

SyIyy
IxxIyy−I^2 xy

∫s

0

tyds

or


qs=

Sy
IxxIyy−Ixy^2


⎝Ixy

∫s

0

txds−Iyy

∫s

0

tyds


⎠ (i)
Free download pdf